The Université Paris-Saclay website is currently being updated following the cyberattack it underwent in August. Certain information may not yet have been updated. We are working as quickly as we can to update all of the website’s content. Thank you for your understanding.
The first year of the master's program is a focused on Chemistry and whose objective is to enable students:
• to acquire solid basic knowledge and know-how in chemistry by strengthening the notions studied during their bachelor's program semester
• to define their professional project by providing them with cross-disciplinary and prevocational knowledge and skills.
The first year of the master's program Chemistry - International Track includes an internship that provides a first research experience in top-level scientific groups, and gives a large priority to lab trainings on up-to-date equipments and platforms. In addition to specific modules of this master's program, some of which are available to other students and will favor intercultural exchange.
Location
ORSAY
Course Prerequisites
Bachelor in Science
Skills
Communicate information and results to different audiences through the ability to describe a protocol and structure results
Be autonomous in establishing and carrying out a theoretical or experimental scientific process in chemistry, organising working time to achieve set goals.
Identify and implement the methods and techniques for the development and/or production of molecules or materials while adhering to good laboratory practices.
Choose and implement the methods of separation and characterisation of compounds whilst understanding the theoretical principles of measurement and being able to interpret the results.
Predict physical and chemical properties or the reactivity of molecules and/or materials by combining all disciplinary knowledge.
Understand the properties of chemical phenomena related to the spatial organisation of matter and their temporal aspects.
This course is an introduction to the main standard analytical techniques in physical chemistry: mass spectrometry and applications (basics on the main ionization processes, fragmentation methods, and analyzers), infrared and UV-visible spectroscopic techniques, photoelectron spectroscopy (synchrotron beam lines will be described).
Prerequisites :
Basics on quantum mechanics (hamiltonien, states of a system)
Basics on classical mechanics (motion of solid bodies)
Description of a photon (as a particle, as an electromagnetic wave).
Bibliographie :
Physical Chemistry, P. Atkins & J. de Paula
Spectrometric Identification of Organic Compounds, 7th Edition, R.M. Silverstein, F.X. Webster, D. Kiemle
Mass spectrometry, a textbook, J.H. Gross
Molecular Fluorescence: Principles and Applications, B. Valeur
Photochemistry, C.E. Wayne & R.P. Wayne
NMR spectroscopy, Harald Gunther (John Wiley & Sons)
Chemical Analysis: Modern Instrumentation Methods and Techniques, A. Rouessac and F. Rouessac
NuclearMagneticResonance, P.J.Hore
Understanding NMR, J.Keller.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Introduction to biophysics and microscopies for life sciences
Language(s) of instruction :
AN
ECTS :
5
Détail du volume horaire :
Lecture :10
Directed study :8
Practical class :16.5
Modalités d'organisation et de suivi :
Coordinator :
Pedagogical team :
Sophie Dupré
Oliver Nüsse
Ariane Deniset
Marie Erard.
Procedure and organisation :
This course is an introduction to several concepts of Biophysics organized by a multidisciplinary team composed of physico-chemist, physicists and cell biologists. It will focus on microscopies and their application to biology.
Activities in small groups, research related tutorials and hands-on will help to develop critical faculties of the students.
Objectifs pédagogiques visés :
Contenu :
This teaching unit will provide to students a basic knowledge on cell biology and an overview of current challenges in microscopy (dyes, optical microscopies and atomic force microscopy).
Cell biology (From DNA to proteins, Cell architecture and motility, The Cell cycle)
Biophysics and microscopies for the life sciences
Optical microscopy: Fluorescence and fluorescent probes for biology, setups for microscopy, super-resolved microscopy techniques, applications to quantitative analysis of molecular behaviors in live cells
Introduction to Atomic Force Microscopy: Atomic Force Microscopy (AFM): Theory and application of AFM. From cells to single molecule studies (Living cells imaging, DNA imaging, biopolymer elasticity).
Prerequisites :
None.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Courses and tutorials
Practicals
Session 1 : F 0.4* EE (Kinetics) + 0.3 * EE (Electrochemistry) + 0.3 * CC TP
Session 2 : F 0.4* EE (Kinetics) + 0.3 * EE (Electrochemistry) + 0.3* CC TP.
Objectifs pédagogiques visés :
Contenu :
Reaction kinetics in gas and solution: experimental and theoretical approaches. Thermodynamics and kinetics of electron transfers : applications to biological systems
- Reaction kinetics
•Relation between rates and mechanisms of chemical reactions
•Collision theory of reaction rates
•Activated complex theory
•Reactions in solution
•Introduction to photochemistry
- Redox reactions and Electrochemistry
•Fundamentals of electron transfer
•Cyclic and linear sweep voltammetry
•Thermodynamics and kinetics of electron transfer
•Electron transfer in biological systems
Laboratory training
•Laser Induced Fluorescence of I2 gas
•Study of molecules by Flash photolysis method
•Influence of the ionic strength on the solubility of a salt
•Cyclic voltammetry of a reversible system
•Mediated redox enzyme electrochemistry.
Prerequisites :
Fundamentals of Kinetics (reaction order, rate constant, Arrhenius law,…)
Solution Chemistry (acid-base, redox, precipitation, complexation,…)
Basics of Chemical Thermodynamics (enthalpy, entropy, Gibbs free energy, equilibrium constant,…).
Bibliographie :
Physical Chemistry, P.W. Atkins, J. De Paula, Ed. Oxford University press
Chemical kinetics and dynamics, J. I. Steinfeld, J. S. Franscisco, W. L. Hase, Ed. Prentice Hall, Englewood Cliffs, New Jersey.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Organic / Inorganic chemistry towards sustainability
Language(s) of instruction :
AN
ECTS :
5
Détail du volume horaire :
Lecture :9
Directed study :15
Practical class :4
Modalités d'organisation et de suivi :
Coordinator :
Pedagogical team :
Ally Aukauloo
Laure Catala
Nicolas Rabasso.
Procedure and organisation :
Part I - organic chemistry: Structure and reactivity of aromatic compounds, Reactivities of carbonyls, carboxyls, amines and organophosphorus compounds.
Part II - inorganic chemistry: Definition of metal complexes, d orbitals description, crystal field theory, Molecular orbitals theory, Angular Overlap Model. Important parameters affecting the d block. Basics on reactivity.
Course tutorials and practicals
Session 1 : F 0.3* P + 0.3 * EE + 0.2 * CC TP + 0.2* CC
Session 2 : F 0.6 * EE + 0.2 * CC TP + 0.2 * CC.
Objectifs pédagogiques visés :
Contenu :
Transition metal complexes are at the heart of all biological processes that support life and are crucial in the development of new technologies for a sustainable world. Research in this field spans from synthesis, spectroscopic characterization, electronic description, surface science, electrochemical and photochemical processes. This course aims at providing the students with a solid basis in coordination chemistry and related areas with the defining goals to address energetic and environmental challenges facing our societies.
Prerequisites :
Atomistics.
Knowledge on the fundamental reactions on the following topics:
Alkanes, Alkenes, Alkynes and aromatics, Haloganated compounds, alcohols, aldehydes and ketones.
Lectures with distance learning, Tutorials and Practical courses.
Objectifs pédagogiques visés :
Contenu :
This course introduces important concepts of quantum mechanics and elaborates fundamental methods in quantum chemistry that are essential for modelling the thermochemistry and spectroscopy of molecular systems.
Content
The courses is divided into two distinct parts. The first half of the course introduces the fundamentals of quantum mechanics and applies the time dependent and time independent Schroedinger equations to analytically solvable systems. The particle confined in a box potential, the hydrogen atom, the rotational and vibrational motions of diatomic molecules are treated in detail.
In the second half of the course, the primary focus is the treatment of many-electron systems by approximate quantum mechanical methods including Hartree-Fock and post Hartree-Fock correlation methods (perturbation theory and configuration interaction). The methods are applied to ground state and excited states of atoms and molecules. Molecular Orbital theory will relate to the above methods and to simpler methods such as extended Hueckel theory, and will be used to build qualitative Molecular Orbital diagrams, Walsh correlation diagrams and to analyze the nature of chemical bonding.
Bibliographie :
Molecular Quantum mechanics, fourth edition 2005, Peter Atkins and Ronald Friedman, Oxford university press.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Photo and electrostimulations : from fundamentals to applications and devices
Language(s) of instruction :
AN
ECTS :
5
Détail du volume horaire :
Lecture :21
Directed study :14
Practical class :13
Project :13
Modalités d'organisation et de suivi :
Coordinator :
Pedagogical team :
Jonathan Piard
Rachel Meallet-Renault
Fabien Miomandre.
Procedure and organisation :
Classical teaching with lectures and tutorials with additional pedagogical elements on ENT (former exams, articles...). Active participation of students (reverse courses) Investigative practical courses as projects. Practical courses in research and teaching laboratories. 2 sessions of 1,75 hours of conferences.
Time distribution :
electrostimulation: Course: 5.25h; TD 3.5h
Photostimulation: Course 12,25h : TD 10,5 Modalities of the knowledge tests: - Session 1 : F 0,4 * EE + 0,6 * CC TP - Session 2 : F 0,6 * EO + 0,4 *CCTP.
Objectifs pédagogiques visés :
Contenu :
Aspects fondamentaux aux défis sociétaux : santé et énergie
• Photophysique : Propriétés physiques à partir de l’état excité (solvatochromisme, excimère/exciplexe, Pka, propriétés rédox…)
• Processus d’inhibition (FRET, transfert d’électrons et protons)
• Electrochimie et lumière : photoélectrochimie, électrochromes, électrochimiluminescence
Applications (en phase condensée)
• Senseurs moléculaires / photochromisme / plasmon de surface
• Composants opto-électroniques, photoélectrolyseurs, afficheurs
"Key aspects of societal challenges: health and energy
- Photophysics: Physical properties from the excited state (solvatochromism, excimer/exciplex, Pka, redox properties...)
- Quenching processes (FRET, electron and proton transfer)
- Electrochemistry and light: photochemistry, electrochromes, electrochimiluminescence
Applications (in condensed phase)
- Molecular sensors / photochromism / surface plasmon
- Opto-electronic components, photoelectrolyzers, displays.
Prerequisites :
L3 de chimie ou chimie physique.
Bibliographie :
"JP Launay et M. Verdaguer: Electrons in Molecules: From Basic Principles to Molecular Electronics,
Y. Jean & F. Volatron: Structure électronique des molécules vol1 et 2, G. Herzberg: Molecular spectra and molecular structure. Vol. 1 & 3, J.R. Lakowicz : Principles of Fluorescence Spectroscopy et Topics in Fluorescence Spectroscopy;
B. Valeur: Molecular Fluorescence: principles and applications et New trends in Fluorescence Spectroscopy, ,
N.J Turro: Modern Molecular Photochemistry,
P. Suppau: Chemistry and light
F. Miomandre, P. Audebert : Luminescence in Electrochemistry, Springer, 2017
Période(s) et lieu(x) d’enseignement :
Period(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Enseignement: Cours magistraux /Travaux dirigés avec études d'articles. TP/visite
Répartition horaire :
Cours:10h Cours-TD: 5h, cours Td:20h Non présentiel: 10h
Session 1 et session 2 : F EE 0.8+CC 0.2.
Objectifs pédagogiques visés :
Contenu :
This course aims at giving an introduction to soft matter and soft chemistry. The first and main part of the course will be dedicated to chemistry of organic polymers and their dynamers. A particular attention will be made on the structural composition effect on supramolecular interactions to control the properties. Different hydrogels and molecular imprinted polymers with applications in drug delivery but also to the detection and trapping of molecules. A second part will be dedicated to inorganic polymers with some basics about their chemistry and applications. The third part will introduce Small Angle X-Ray Scattering (SAXS), a powerful method to characterize soft matter systems and nanomaterials like mesoporous materials.
Bibliographie :
De la solution à l'oxyde, seconde édition, EDP Sciences J-P. Jolivet.
Anne Lafosse (PR 31); Debora Scuderi (MCF 31); Nathalie Simon (PR 33).
Procedure and organisation :
Classical teaching with lectures and tutorials with additional pedagogical elements on ENT (former exams, articles...). Lab training on IR spectroscopy. Soleil and XPS visits. Articles analyse as project (2 lectures for the oral presentation of the project) Knowledge tests :
Vibrational analysisi of surfaces : 0,2 EE + 0,15 CC project + 0,1 lab training
Surface and interface analysisi composition : 0,2 EE + 0,15 CC project
Coupling electrochemical interface with SC et XPS : 0,2 EE.
Objectifs pédagogiques visés :
Contenu :
Synchrotron light source. Visit of the SOLEIL machine.
Composition analysis of surfaces and interfaces: Basics of ESCA-XPS spectroscopy. Basics of AES spectroscopy. Bibliography project.
Vibrational analysis of surfaces: IR spectroscopy overview, Basics of Raman and Coherent Antistokes Raman Scattering (CARS) spectroscopies. Lab training « vibrational analysis of interfaces ». Bibliography project.
Interfacial electrochemistry / XPS analysis coupling applied to semi-conductors (SC): Basics of electrochemistry on semi-conductors, characterisation SC surfaces electrochemically modified. Synchrotron machine as light sources for spectroscopy.
Comprehend the complementarity of standard techniques for surface and thin film characterization: XPS and AES spectroscopies, Raman et CARS spectroscopies.
Comprehend the complementarity of interfacial electrochemistry and XPS analysis for the analysis and the characterization of SC surfaces.
Prerequisites :
Electrochemical Thermodynamic; Electrochemical Kinetic of metals. Cyclic Voltammetry.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Décembre - Janvier - Février - Mars.
Location :
ORSAY - VERSAILLES
Modalités de candidatures
Application period
From 02/01/2024 to 31/05/2024
Compulsory supporting documents
Copy of the last diploma.
Copy of identity document.
Motivation letter.
All transcripts of the years / semesters validated since the high school diploma at the date of application.
Certificate of English level.
Curriculum Vitae.
Additional supporting documents
VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).
Supporting documents :
- Residence permit stating the country of residence of the first country
- Or receipt of request stating the country of first asylum
- Or document from the UNHCR granting refugee status
- Or receipt of refugee status request delivered in France
- Or residence permit stating the refugee status delivered in France
- Or document stating subsidiary protection in France or abroad
- Or document stating temporary protection in France or abroad.