M2 Nuclear Engineering
-
Capacité d'accueil80
-
Langue(s) d'enseignementAnglais
-
Régime(s) d'inscriptionFormation initialeFormation continue
The Master Nuclear Energy is an international Master's degree, whose objective is to provide high-level foreign and French students with the main knowledge necessary for the nuclear industry producing low-carbon electricity. Through the quality and scope of the content processed, it makes it possible to meet a wide spectrum of the needs of companies in this field by recruiting students with high initial employability. This Master's degree also aims to prepare students for research in the nuclear field (e. g. Reactor Physics, Modeling and Simulation, Instrumentation, Radiochemistry). The entire Master's degree therefore addresses the different professions in civil nuclear energy. Its teaching is entirely provided in English.
The first year is splitted in two track: Physics and Chemistry. Each of these intend to provide student essential knowledge to prepare them for the second year in the master.
In the second year, five tracks are proposed:
- Fuel Cycle: this course aims to learn the physico-chemistry necessary for the different stages of the nuclear fuel cycle. It is based on the introduction of the basic research concepts required for the development and fine-tuning of processes and the design of new industrial objects. This track is only accessible from M1 Chemistry.
- Decommissionning and Waste Management: this course aims to acquire the knowledge, skills and attitudes necessary to conduct a project to clean up and dismantle old nuclear installations (reactor, plant, workshop, laboratory, installation, contaminated site or soil) and to manage radioactive waste. This track is accessible from both M1.
- Operation: the objective here is to learn how to operate, control and maintain a nuclear installation, in particular a nuclear power plant. The programme provides the knowledge base for understanding the physical phenomena related to the operation of a facility, in particular from the point of view of safety and security. This track is mainly accessible from M1 Physics.
- Nuclear Plant Design: this course provides students with in-depth training in the design and construction of nuclear facilities such as nuclear power plants or fuel processing plants. It covers the safety approach, project management, civil engineering as well as systems and equipment. This track is only accessible from M1 Physics.
- Nuclear Reactor Physics and Engineering:this in-depth training, focusing on the physics of nuclear reactors, aims to meet the needs of the nuclear industry such as those related to the optimized operation of the current fleet, the deployment of Generation III+ reactors (EPR...), the design of Generation IV nuclear reactors. It also includes the design and operation of experimental reactors and the development and interpretation of experiments. This track is only accessible from M1 Physics.
Bachelor in Physics Bachelor in Chemistry
Analyser, concevoir et proposer des solutions à des problèmes complexes dans l’un des grands domaines de l’énergie nucléaire : Ingénierie, Exploitation, Gestion des Déchets et démantèlement, Cycle du Combustible.
Analyze, design and propose solutions to complex problems in one of the major fields of nuclear energy: Engineering, Operations, Waste Management and Decommissioning, Fuel Cycle.Être à l’aise et innovant dans le domaine électronucléaire.
Be comfortable and innovative in the field of nuclear power.Agir en professionnel responsable dans le domaine de l’énergie nucléaire
Act as a responsible professional in the field of nuclear energy.Mener un projet, une équipe dans un environnement multiculturel et international
Lead a project, a team in a multicultural and international environment.
At the end of the Master students can pretend to one of the five following engineer profiles:
- Engineer in Fuel Cycle
- Engineer in Decommissioning and Waste Management
- Engineer in Nuclear Power Plant design
- Engineer in Nuclear Power Plant operation
- Engineer in Nuclear Reactor Physics
Students will have access to job opportunities in civil nuclear industry from the Master Nuclear Energy industrial partners (EDF, AREVA, FRAMATOME, ...) and their adjoint companies.
The possibility of PhD thesis is also opened.
INSTN
Centre de Sciences Nucléaires et de Sciences de la Matière
Institut de physique nucléaire d'Orsay
Laboratoire de l'accélérateur linéaire
Service d'étude des réacteurs et de mathématiques appliquées.
Le M2 comprend 5 sous-parcours. Le premier semestre comprend 4 modules de tronc commun (pour un total de 12 ECTS) commun au 5 sous-parcours (groupe 1). Le groupe 2 correspond à un cours commun à 4 sous-parcours (cours de Risk management). Le groupe 3 est commun aux sous-parcours DWM et FC. Le groupe 4 est commun aux sous-parcours NPD et O. Le groupe 5, 6, 7, 8 et 9 sont spécifiques aux sous-parcours DWM, FC, NPD, NRPE, et O, respectivement. Enfin le groupe 10 est commun aux sous-parcours NPD, NRPE, et O.
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au premier semestre; par contre les sous-parcours DWM et O comportent 28 ECTS au premier semestre.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Introduction to Safety. Criticality-Safety | 3 | 17 | 3 | 4 | ||||||
Introduction to Safety. Criticality-SafetyLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
17
Travaux dirigés :
3
Cours TD :
4
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Frédéric FOUQUET (CEA/INSTN) Grégory CAPLIN (Orano) Mathieu MILIN (IRSN).
Déroulement et organisation pratique :
Because it is a prerequisite for the “Criticality-Safety” course the “Introduction to Safety” course is the first to be taught in the module. The 12-hour “Introduction to Safety” part consists of a 11-hour “course” part and a 1-hour “course-tutorial” part each addressed to the full-class. The 12-hour “Criticality-Safety” part consists of a 6-hour “course” part addressed to the full-class, a 3-hour “course-tutorial” part addressed to the half-class (two student groups), and a 3-hour “tutorial” part addressed to the half-class . Such modalities strength the interaction students/teachers and make the learning more effective. Objectifs pédagogiques visés :
Contenu :
The all nuclear activity sectors are interested by the operationnal problematics of the Safety and Criticality-Safety treated. Introduction Operation and Safety Probabilistic safety assessment Emergency preparedness Enhancing safety 2. Criticality-Safety - To understand the consequences and the phenomenology of an inadvertent criticality in a fuel cycle facility (except operating nuclear cores) or during a transport of fissile materials,
Prérequis :
Prerequisites for « Introduction to Safety »: Basic knowledge on PWR (components, systems and operation). Prerequisites for « Criticality-Safety »: Basics Neutronics. « Introduction to Safety » course is also a prerequisite.
Bibliographie :
1. “Introduction to Safety” part: IAEA website : « safety of nuclear power plants » documents •https://www.iaea.org/search/google/safety%20of%20nuclear%20power%20plants •https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html 2.“Criticality-Safety” part: * T.P. McLaughlin et Al., “A Review of Criticality Accidents”, 2000 Revision, LA-13638, * “Analysis Guide – Nuclear Criticality Risks and their prevention in plants and laboratories”, DSU/SEC/T/2010-334, http://www.irsn.fr/EN/publications/technical-publications/Documents/IRSN_report_nuclear_criticality_risks.pdf. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Radiation Protection | 3 | 10.5 | 12 | 6 | ||||||
Radiation ProtectionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
10.5
Cours TD :
12
Cours TP :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Philippe MASSIOT (INSTN) François TROMPIER, Estelle Davesne (IRSN) Cheikh DIOP (CEA Saclay) Nathalie DRAY (Framatome).
Déroulement et organisation pratique :
This module consists of 28.5h/student. The teaching implements a wide range of pedagogical methods including labs, calculation codes and serious games, a training pilot facility. According to the pedagogical method used the class has to be divided into two 25-student groups or four 12-student groups. Objectifs pédagogiques visés :
Contenu :
Complete knowledge and operational skills in Radiation Protection are provided by implementing a wide range of approaches. 1. Using the international regulation frame of reference 2. Describe the main uses of radiation in various fields 3. Apply the three means of protection against ionizing radiation 4. Characterize a workplace study: 5. Describe the external dosimetry concepts: 6. Apply the external dosimetric concepts: 7. Explain the principles of internal dosimetry: 8. Identify the biological effects of ionizing radiation: 9. Use different detection devices: 10. Study the accidental / incidental situations:.
Prérequis :
Nuclear physics: radioactivity, emission intensity, directly and indirectly ionizing particles, beta particles, x-rays, gamma-rays, cross sections of interaction. - Interaction of radiation with matter: • Interaction of photon with matter: •Interaction of light and heavy charge particles with matter •Interaction of neutrons with matter: elastic and inelastic scattering, capture, fission, transmission law.
Bibliographie :
- Introduction to radiological physics and radiation dosimetry, F. H. Attix, Wiley, 1986. - ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Oxford: Elsevier; ICRP Publication 103; 2007. - Knoll, G. F. Radi. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Energy Transition and Flexibility | 2 | 15 | ||||||||
Energy Transition and FlexibilityLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
15
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Gilles MATHONNIERE (CEA Saclay). A compléter.
Déroulement et organisation pratique :
This 15-hour module is divided into five three-hour slots. Each slot is devoted to one part of the course. Objectifs pédagogiques visés :
Contenu :
The educational objective of this teaching module is to raise student’s awareness to the flexibility aspects which will have an increasingly influential role especially for electricity. The complementarity of variable renewable energy sources (VRE) and nuclear will be addressed both technically and economically. •The power electric grid, flexibility, the future role of nuclear power. Presentation of the electrical network and its various constraints to function properly. Presentation and discussion on the future decarbonated electrical mix, the flexibility of nuclear power will play a leading role. Some ways of improvement for the future will also be mentioned (SMR, PWR without boron, Fast reactors). •Economic aspects. The consequences from an economic point of view are analyzed. •The cogeneration. Presentation of the heat market, heat distribution networks, the potential of nuclear reactors in this field and some feedback from projects carried out abroad. •Hydrogen production. Presentation of the hydrogen market, the cost of hydrogen production by electrolysis and the possibility of finding a business model for a nuclear reactor based on both the production of electricity and hydrogen.
Prérequis :
No specific prerequisite. Interest for both economy and electricity supply is desirable.
Bibliographie :
•The costs of Decarbonisation : System Costs with High Shares of Nuclear and Renewables OECD/NEA •Projected Costs of Electricity Generation IEA/NEA •Cany, C., Mansilla, C., Mathonnière, G., & da Costa, P. (2018a). Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix. Energy, 150, 544–555. •Leurent, M., Jasserand, F., Locatelli, G., Palm, J., Rämä, M., & Trianni, A. (2017). Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland. Energy Policy, 107, 138–150. •Tlili, O., Cany, C Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Nuclear Fuel Cycles. Nuclear Reactor Systems | 3 | 3 | 24 | |||||||
Nuclear Fuel Cycles. Nuclear Reactor SystemsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
3
Cours TD :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Pascal DANNUS (CEA.INSTN) Frédéric DAMIAN, Richard LENAIN, Jean-Baptiste THOMAS (CEA/DEN).
Déroulement et organisation pratique :
1.Nuclear Fuel Cycles part: The 6h of “course-tutorial” (“cours-TD” in French) slots will be delivered by two teachers together in front of the full class. The 3h of tutorial (“TD” in French) will be addressed 2 half-class (2 groups of students) in parallel. 2.Nuclear Reactor Systems part: 18 h of “course-tutorial” will be delivered at a time. Three teachers are successively involved with the following distribution: a.Introduction, Gen-IV, Design and Prospects (J.B. Thomas) b.Gen-IV HTR, Gen-I reactors (including Gas-cooled reactors, heavy water reactors and RBMK), Experimental Reactors (R. Lenain) c.Gen-III including BWR, Innovation and Multi-recycling, toward Gen-IV nuclear fleet (F. Damian). Objectifs pédagogiques visés :
Contenu :
1.Nuclear Fuel Cycles : 2.Nuclear Reactor Systems
Prérequis :
Basics of U chemistry. Basics of Radiation Protection. PWR functional description. Basics of system thermodynamics, of neutronics, thermal hydraulics, fuel cycle.
Bibliographie :
“Treatment and recycling of spent nuclear fuel; actinide partitioning – Application to waste management”, Monographie CEA/DEN, Editions Le Moniteur, 2008 “Nuclear Reactor Systems”, collection Génie Atomique, EDP Sciences (2016) Several books from Monographie CEA/DEN, Editions Le Moniteur, each of them dedicated to a specific system. Période(s) et lieu(x) d’enseignement :
Période(s) :
Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
PWR Functional Description | 3 | 21 | 3 | |||||||
PWR Functional DescriptionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
21
Travaux dirigés :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Louis-Joseph BONNAUD (CEA/INSTN) Experts EDF, Framatome.
Déroulement et organisation pratique :
This 24-hour module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. It consists of 21h of courses addressed to the full-class and 3h of tutorial addressed to half-class (two groups). After following the teachings of the module, students will be able to describe the general organization of PWR in the context of a normal operation including: -the functional role of the components of the nuclear island as well as the main physical phenomena associated; -nuclear auxiliary fluid systems; -the conventional island. They will have assimilated the economic issues related to the thermodynamic performance of water-steam conversion cycle, security and economic issues related to the fuel and its management. The concepts of Burn Up, hotspot factor, loading pattern associated with safety criteria are thoroughly described. Objectifs pédagogiques visés :
Contenu :
This module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. -Architecture and components
Prérequis :
General physics, thermodynamics, fluid mechanism and heat transfert.
Bibliographie :
Barré, B. et al. (2016). Nuclear Reactor Systems. Edp Sciences. Reuss, Paul (2008). Neutron physics. Edp Sciences. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Internship | 18 | |||||||||
InternshipECTS :
18
Modalités d'organisation et de suivi :
Coordinateur :
|
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Risk Management | 4 | 30 | ||||||||
Risk ManagementLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
30
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
FANG Yiping, ZENG Zhiguo, FAURIAT William, HIBTI Mohammed, DUVAL Carole.
Déroulement et organisation pratique :
The course will be given at INSTN. Objectifs pédagogiques visés :
Contenu :
Objectives: Contents:
Prérequis :
Probability, Statistics.
Bibliographie :
Zio E., An introduction to the basics of reliability and risk analysis, World Scientific, 2007. Zio E., Computational methods of reliability and risk analysis, World Scientific, 2009. Zio, E. Baraldi, P. and Cadini F., Basics of reliability and risk analysis: Worked Out Problems and Solutions, World Scientific, 2011. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Lieu(x) :
Saclay |
Les cours de second semestre intègrent les cours de tronc commun (dont le stage - groupe 1) et les cours spécifiques aux 5 sous-parcours du M2 (groupes 2, 3, 4, 5 et 6 pour les sous-parcours DWM, FC, NPD, NRPE et DWM, respectivement).
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au second semestre; a contrario les sous-parcours DWM et O comportent 32 ECTS au second semestre. L'ensemble des 5 sous-parcours comprennent 60 ECTS.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Introduction to Safety. Criticality-Safety | 3 | 17 | 3 | 4 | ||||||
Introduction to Safety. Criticality-SafetyLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
17
Travaux dirigés :
3
Cours TD :
4
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Frédéric FOUQUET (CEA/INSTN) Grégory CAPLIN (Orano) Mathieu MILIN (IRSN).
Déroulement et organisation pratique :
Because it is a prerequisite for the “Criticality-Safety” course the “Introduction to Safety” course is the first to be taught in the module. The 12-hour “Introduction to Safety” part consists of a 11-hour “course” part and a 1-hour “course-tutorial” part each addressed to the full-class. The 12-hour “Criticality-Safety” part consists of a 6-hour “course” part addressed to the full-class, a 3-hour “course-tutorial” part addressed to the half-class (two student groups), and a 3-hour “tutorial” part addressed to the half-class . Such modalities strength the interaction students/teachers and make the learning more effective. Objectifs pédagogiques visés :
Contenu :
The all nuclear activity sectors are interested by the operationnal problematics of the Safety and Criticality-Safety treated. Introduction Operation and Safety Probabilistic safety assessment Emergency preparedness Enhancing safety 2. Criticality-Safety - To understand the consequences and the phenomenology of an inadvertent criticality in a fuel cycle facility (except operating nuclear cores) or during a transport of fissile materials,
Prérequis :
Prerequisites for « Introduction to Safety »: Basic knowledge on PWR (components, systems and operation). Prerequisites for « Criticality-Safety »: Basics Neutronics. « Introduction to Safety » course is also a prerequisite.
Bibliographie :
1. “Introduction to Safety” part: IAEA website : « safety of nuclear power plants » documents •https://www.iaea.org/search/google/safety%20of%20nuclear%20power%20plants •https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html 2.“Criticality-Safety” part: * T.P. McLaughlin et Al., “A Review of Criticality Accidents”, 2000 Revision, LA-13638, * “Analysis Guide – Nuclear Criticality Risks and their prevention in plants and laboratories”, DSU/SEC/T/2010-334, http://www.irsn.fr/EN/publications/technical-publications/Documents/IRSN_report_nuclear_criticality_risks.pdf. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Radiation Protection | 3 | 10.5 | 12 | 6 | ||||||
Radiation ProtectionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
10.5
Cours TD :
12
Cours TP :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Philippe MASSIOT (INSTN) François TROMPIER, Estelle Davesne (IRSN) Cheikh DIOP (CEA Saclay) Nathalie DRAY (Framatome).
Déroulement et organisation pratique :
This module consists of 28.5h/student. The teaching implements a wide range of pedagogical methods including labs, calculation codes and serious games, a training pilot facility. According to the pedagogical method used the class has to be divided into two 25-student groups or four 12-student groups. Objectifs pédagogiques visés :
Contenu :
Complete knowledge and operational skills in Radiation Protection are provided by implementing a wide range of approaches. 1. Using the international regulation frame of reference 2. Describe the main uses of radiation in various fields 3. Apply the three means of protection against ionizing radiation 4. Characterize a workplace study: 5. Describe the external dosimetry concepts: 6. Apply the external dosimetric concepts: 7. Explain the principles of internal dosimetry: 8. Identify the biological effects of ionizing radiation: 9. Use different detection devices: 10. Study the accidental / incidental situations:.
Prérequis :
Nuclear physics: radioactivity, emission intensity, directly and indirectly ionizing particles, beta particles, x-rays, gamma-rays, cross sections of interaction. - Interaction of radiation with matter: • Interaction of photon with matter: •Interaction of light and heavy charge particles with matter •Interaction of neutrons with matter: elastic and inelastic scattering, capture, fission, transmission law.
Bibliographie :
- Introduction to radiological physics and radiation dosimetry, F. H. Attix, Wiley, 1986. - ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Oxford: Elsevier; ICRP Publication 103; 2007. - Knoll, G. F. Radi. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Energy Transition and Flexibility | 2 | 15 | ||||||||
Energy Transition and FlexibilityLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
15
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Gilles MATHONNIERE (CEA Saclay). A compléter.
Déroulement et organisation pratique :
This 15-hour module is divided into five three-hour slots. Each slot is devoted to one part of the course. Objectifs pédagogiques visés :
Contenu :
The educational objective of this teaching module is to raise student’s awareness to the flexibility aspects which will have an increasingly influential role especially for electricity. The complementarity of variable renewable energy sources (VRE) and nuclear will be addressed both technically and economically. •The power electric grid, flexibility, the future role of nuclear power. Presentation of the electrical network and its various constraints to function properly. Presentation and discussion on the future decarbonated electrical mix, the flexibility of nuclear power will play a leading role. Some ways of improvement for the future will also be mentioned (SMR, PWR without boron, Fast reactors). •Economic aspects. The consequences from an economic point of view are analyzed. •The cogeneration. Presentation of the heat market, heat distribution networks, the potential of nuclear reactors in this field and some feedback from projects carried out abroad. •Hydrogen production. Presentation of the hydrogen market, the cost of hydrogen production by electrolysis and the possibility of finding a business model for a nuclear reactor based on both the production of electricity and hydrogen.
Prérequis :
No specific prerequisite. Interest for both economy and electricity supply is desirable.
Bibliographie :
•The costs of Decarbonisation : System Costs with High Shares of Nuclear and Renewables OECD/NEA •Projected Costs of Electricity Generation IEA/NEA •Cany, C., Mansilla, C., Mathonnière, G., & da Costa, P. (2018a). Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix. Energy, 150, 544–555. •Leurent, M., Jasserand, F., Locatelli, G., Palm, J., Rämä, M., & Trianni, A. (2017). Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland. Energy Policy, 107, 138–150. •Tlili, O., Cany, C Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Nuclear Fuel Cycles. Nuclear Reactor Systems | 3 | 3 | 24 | |||||||
Nuclear Fuel Cycles. Nuclear Reactor SystemsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
3
Cours TD :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Pascal DANNUS (CEA.INSTN) Frédéric DAMIAN, Richard LENAIN, Jean-Baptiste THOMAS (CEA/DEN).
Déroulement et organisation pratique :
1.Nuclear Fuel Cycles part: The 6h of “course-tutorial” (“cours-TD” in French) slots will be delivered by two teachers together in front of the full class. The 3h of tutorial (“TD” in French) will be addressed 2 half-class (2 groups of students) in parallel. 2.Nuclear Reactor Systems part: 18 h of “course-tutorial” will be delivered at a time. Three teachers are successively involved with the following distribution: a.Introduction, Gen-IV, Design and Prospects (J.B. Thomas) b.Gen-IV HTR, Gen-I reactors (including Gas-cooled reactors, heavy water reactors and RBMK), Experimental Reactors (R. Lenain) c.Gen-III including BWR, Innovation and Multi-recycling, toward Gen-IV nuclear fleet (F. Damian). Objectifs pédagogiques visés :
Contenu :
1.Nuclear Fuel Cycles : 2.Nuclear Reactor Systems
Prérequis :
Basics of U chemistry. Basics of Radiation Protection. PWR functional description. Basics of system thermodynamics, of neutronics, thermal hydraulics, fuel cycle.
Bibliographie :
“Treatment and recycling of spent nuclear fuel; actinide partitioning – Application to waste management”, Monographie CEA/DEN, Editions Le Moniteur, 2008 “Nuclear Reactor Systems”, collection Génie Atomique, EDP Sciences (2016) Several books from Monographie CEA/DEN, Editions Le Moniteur, each of them dedicated to a specific system. Période(s) et lieu(x) d’enseignement :
Période(s) :
Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
PWR Functional Description | 3 | 21 | 3 | |||||||
PWR Functional DescriptionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
21
Travaux dirigés :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Louis-Joseph BONNAUD (CEA/INSTN) Experts EDF, Framatome.
Déroulement et organisation pratique :
This 24-hour module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. It consists of 21h of courses addressed to the full-class and 3h of tutorial addressed to half-class (two groups). After following the teachings of the module, students will be able to describe the general organization of PWR in the context of a normal operation including: -the functional role of the components of the nuclear island as well as the main physical phenomena associated; -nuclear auxiliary fluid systems; -the conventional island. They will have assimilated the economic issues related to the thermodynamic performance of water-steam conversion cycle, security and economic issues related to the fuel and its management. The concepts of Burn Up, hotspot factor, loading pattern associated with safety criteria are thoroughly described. Objectifs pédagogiques visés :
Contenu :
This module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. -Architecture and components
Prérequis :
General physics, thermodynamics, fluid mechanism and heat transfert.
Bibliographie :
Barré, B. et al. (2016). Nuclear Reactor Systems. Edp Sciences. Reuss, Paul (2008). Neutron physics. Edp Sciences. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Internship | 18 | |||||||||
InternshipECTS :
18
Modalités d'organisation et de suivi :
Coordinateur :
|
Le M2 comprend 5 sous-parcours. Le premier semestre comprend 4 modules de tronc commun (pour un total de 12 ECTS) commun au 5 sous-parcours (groupe 1). Le groupe 2 correspond à un cours commun à 4 sous-parcours (cours de Risk management). Le groupe 3 est commun aux sous-parcours DWM et FC. Le groupe 4 est commun aux sous-parcours NPD et O. Le groupe 5, 6, 7, 8 et 9 sont spécifiques aux sous-parcours DWM, FC, NPD, NRPE, et O, respectivement. Enfin le groupe 10 est commun aux sous-parcours NPD, NRPE, et O.
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au premier semestre; par contre les sous-parcours DWM et O comportent 28 ECTS au premier semestre.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Nuclear Physics, Neutronics Bases | 2 | 24 | ||||||||
Nuclear Physics, Neutronics BasesLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours TD :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Doligez Xavier, Université Paris-Saclay.
Déroulement et organisation pratique :
The course is divided in 8 session of 3 hours each. For each session, a lecture will be given on the topic at hand followed immediately by a tutorial session in which the students use the new concepts in samples problems. Objectifs pédagogiques visés :
Contenu :
This course aims to give enough understanding of the neutronics to be able to understand results and challenges of neutronics studies. The sessions will cover:
Prérequis :
Students should be familiar with basic concepts of nuclear physics such as: size, charge and mass of the nucleus; the binding energy in ground state nuclei; excitation energy. They should understand radioactive decays. Students should be familiar with derivatives of common analytic function and have sufficient knowledge in mathematics to solve simple linear differential equation of the first and second order. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Lieu(x) :
GIF-SUR-YVETTE |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Nuclear Physics and Neutronics | 3 | 15 | 12 | |||||||
Nuclear Physics and NeutronicsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
15
Cours TD :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Fadhel MALOUCH (CEA Saclay).
Déroulement et organisation pratique :
This course takes place in 9 sessions (of 3 hours each) and which correspond to the items defined above. The coordinator of the teaching unit provides all lectures. No duplication of the group of students is to be expected. Examples of applications are inserted in the lecture sessions for a better assimilation the discussed concepts. Objectifs pédagogiques visés :
Contenu :
The objective of this course is to provide the basics of neutronics and reactor physics for the design and the operation of nuclear reactors. The course aims at describing the physical phenomena that make it possible to apprehend reactor-core control and associated aspects (neutron transport, safety-criticality, kinetics, reactivity, control means, etc.). •Review of nuclear physics basics
Prérequis :
Linear Algebra, Differential Equation.
Bibliographie :
Paul Reuss, “Neutron Physics”, Les Ulis, INSTN/EDPSciences, 2008. “Neutronics”, A Nuclear Energy Division Monograph", ouvrage collectif, Paris, Saclay, Les Éditions du Moniteur/CEA, 2015. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Thermohydraulics | 4 | 33 | ||||||||
ThermohydraulicsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours TD :
33
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Nicolas DORVILLE, Patrick DUMAZ (CEA).
Déroulement et organisation pratique :
There are eleven 3-hour time slots. The teaching is delivered according to a “course-tutorial” mode allowing a strong participation of the students and an effective interaction with the teachers. In addition, some home-works, associated with an assessment, constitute a part of the Modalities of Knowledge Assessment process. A final written exam completes the assessment process. Objectifs pédagogiques visés :
Contenu :
- Fluid mechanics
Prérequis :
Basics Math knowledge is necessary for this course: integrals and derivatives, vectors and tensors.
Bibliographie :
-The teacher will provide a textbook with all the necessary information. -N.E. Todreas, M.S. Kazimi, Nuclear systems I, Thermal Hydraulic Fundamentals, Taylor&Francis. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre.
Lieu(x) :
GIF-SUR-YVETTE |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Dismantling and Waste Decommissioning | 5 | 49 | ||||||||
Dismantling and Waste DecommissioningLangues d’enseignement :
AN
ECTS :
5
Détail du volume horaire :
Cours :
49
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Xavier VITART (CEA), Frédérique HOURCADE (Orano), Muriel FIRON (CEA).
Déroulement et organisation pratique :
All the lessons are performed by professionals (CEA, ORANO, EDF, ANDRA companies), deeply involved in Decommissioning and Waste Management projects or R&D activities in the field. The pedagogical methods ara funded on learning by problems and by projects, with a high level of implication of the students, through interactions with the teachers, and through projects studies in groups. Visits are organised in order to confrontate the students with the field realities. Objectifs pédagogiques visés :
Contenu :
The aim of this module is to give the students an overview of all the components of the decommissioning of nuclear facilities process, from an engineering point of view, meaning puridisciplinary, multi-scale, systemic approaches, meaning how to apprehend complexity. Lessons include regulatory and safety issues, project management (different steps which have to be teaken into account), how to built a scenario of decommissioning, risk analysis, safety studies, ALARA (As low as reasonably achivable) principle, instrumentation and detection methods, research and development activities in the field (news tools, new methods, new strategies), human and organizational factors of success, cost evaluation based on experience feedback. All the lessons include detailed real cases studies.
Prérequis :
Pre-requisite are the fundamentals of the engineering sciences (physics, chemical engineering, mechanical engineering), and a good knowledge of the fundamentals of radioactivity (from the nature of radioactivity emissions to basic principles of radioprotection).
Bibliographie :
- Policies and Strategies for the Decommissioning of Nuclear and Radiological Facilities IAEA Nuclear Energy Series NW-G-2.1 - Guide de l'ASN n°6 : Arrêt définitif, démantèlement et déclassement des installations nucléaires de base - Guide n°14 de l'ASN r. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Politics, Strategy and Management of Decommissioning | 5 | 24 | 15 | |||||||
Politics, Strategy and Management of DecommissioningLangues d’enseignement :
AN
ECTS :
5
Détail du volume horaire :
Cours :
24
Travaux dirigés :
15
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Yohan RENUCCI (CEA) Patrice FRANCOIS (IRSN) Laure BRU (EDF) Jean-Marie RONDEAU Patrick O’SULLIVAN (AIEA) Thibaut NICOLAS (CEA). Objectifs pédagogiques visés :
Contenu :
Objectives Content Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
Ecole des Ponts ParisTech (Champs sur Marne) |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Calculation Codes | 3 | 30 | ||||||||
Calculation CodesLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
30
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Daniela Cancila. Objectifs pédagogiques visés :
Contenu :
Dependability of computer-based systems
Prérequis :
Basic knowledge in software engineering and programming. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février.
Lieu(x) :
PALAISEAU |
||||||||||
Systems and Equipments | 4 | 39 | ||||||||
Systems and EquipmentsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
39
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Didier Schoevaerts, F Lignini, M Pfeiffer, P Videlaine, B Lenogue, M Vaindirlis, A Chabod, C Duval, B-J Willey, A Wasylyk, J Grosmaire.
Déroulement et organisation pratique :
CM: 39h Session 1 : Mid Term examination (written or oral) (0,5) Final examination (Written or oral) (0,5) Session 2 : Final examination (written or oral) (1). Objectifs pédagogiques visés :
Contenu :
Objectives: -Explain the main general bases of the design of a nuclear power plant, the equipment and the systems, taking into account the nuclear safety requirements, the design codes and standards with their recent evolutions (regulatory and industrial context) Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Design | 2 | 24 | ||||||||
DesignLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Yves Crolet, Pierre-Alain Naze, Elie Petre-Lazar. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
From Seismology to Earthquake Engineering | 2 | 27 | ||||||||
From Seismology to Earthquake EngineeringLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
27
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Francois Semblat.
Déroulement et organisation pratique :
The organization of the various topics is described above. The course will alternate lectures with tutorials. Videos from a MOOC in the same field will also be used. The evaluation will be made through a seismic design project. Objectifs pédagogiques visés :
Contenu :
This course ranges from the science of earthquakes (seismology) to their effect on civil engineering structures (earthquake engineering). It is organized as follows:
Prérequis :
Fundamentals of: •mechanics of solids and structures, •waves and vibrations. Basics in numerical methods. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Concrete | 2 | 18 | 6 | |||||||
Materials Physics: ConcreteLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
18
Travaux pratiques :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Michel Torrenti, Adelaide Ferraille, Christophe Bernard, Benjamin Terrade.
Déroulement et organisation pratique :
6 courses (at ENSTA and Ifsttar) + 2 practical works (at Ifsttar). Objectifs pédagogiques visés :
Contenu :
1) Constructive principles of reinforced and prestressed concrete, example of the nuclear confinement vessels ·
Prérequis :
Mechanics of material. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Corrosion | 1 | 12 | ||||||||
Materials Physics: CorrosionLangues d’enseignement :
AN
ECTS :
1
Détail du volume horaire :
Cours :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Kevin Ogle. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Numerical Design | 3 | 15 | 18 | |||||||
Numerical DesignLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
15
Cours TD :
18
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Ioannis Politopoulos, Emmanuel Jeanvoine.
Déroulement et organisation pratique :
CM: 6h, TD: 12h, Projet: 15h. Objectifs pédagogiques visés :
Contenu :
Master the fundamental aspects of the finite elements methods and practice it in the context of the design of structures. Learn the different numerical algorithms especially those used in non-linear analysis of structures. Be able to solve highly non linear coupled problem with a degree of precision difficult to reach by classical methods (This fact is fundamental for the nuclear domain).
Prérequis :
Good level in applied mathematics (analysis, algebra, optimization) Basic knowledge in software engineering and programming Elasticity (3D, beams, plates and shells) Heat conduction Plasticity Linear dynamics Non-linear dynamics Fatigue and fracture. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Actinides electronic structure and spectroscopy | 2 | 12 | 12 | |||||||
Actinides electronic structure and spectroscopyLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
12
Travaux dirigés :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
M. Maloubier.
Déroulement et organisation pratique :
Five lectures and a bibliographic study. Objectifs pédagogiques visés :
Contenu :
The chemical properties of actinides element are described and related to their electronic characteristics. This course will cover the electronic structure (crystal field model and molecular orbitals) and their associated spectroscopic properties. The primary focus will be on understanding their spectroscopic properties (UV-Vis, fluorescence, and X-ray absorption) with the goal of understanding the speciation of actinides in different media. The notion will be introduced through the discussion of actinide behavior in the environment. The goal of the course is to provide students with an understanding of the actinide elements for support in graduate education and/or research. The course objectives are:
Prérequis :
Quantum chemistry, electronic structure. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PARIS |
||||||||||
Cooling and Molten Salts | 3 | 18 | 3 | |||||||
Cooling and Molten SaltsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
18
Travaux pratiques :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
S. Delpech, G. Lefèvre. Objectifs pédagogiques visés :
Contenu :
This module deals with the chemistry of (1) molten salts, and (2) cooling circuits of PWR. Several common points exist, as a strong analogy with solution chemistry at room temperature. The objective of the first part is to present the potential of pyrochemistry for nuclear fuel processing in general and for the particular case of the molten salt nuclear reactor (Generation IV reactor). In the second part, the control of the chemistry of the primary and secondary circuits of PWR is presented.
Prérequis :
Solution chemistry. Période(s) et lieu(x) d’enseignement :
Période(s) :
Octobre - Novembre - Décembre.
Lieu(x) :
PARIS |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Neutronics 1 : Fundamentals | 4 | 3 | 36 | |||||||
Neutronics 1 : FundamentalsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Travaux dirigés :
3
Cours TD :
36
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Fausto MALVAGI (CEA Saclay) Hervé GOLFIER (CEA Saclay).
Déroulement et organisation pratique :
The course is delivered successively by two teachers for the topics associated to transport theory and to reactor physics, respectively. •Course : o Introduction to neutronics: 3h (Hervé GOLFIER) •Cours-TD “Transport theory” part (Fausto MALVAGI): oTransport equation: 3h oOne-group diffusion: 6h oPoint kinetics: 3h oMultigroup theory: 3h oSlowing down and Resonant absorption: 6h •Cours-TD “Reactor Physics” part (Hervé GOLFIER): oFission product poisoning: 3h oFuel depletion: 3h oTemperature effects and reactivity control: 6h Homework exercises are given and a special exercise session is organized. Evaluation of knowledge and skills acquired though an exam. Objectifs pédagogiques visés :
Contenu :
The purpose of this course is to introduce the important elements for the understanding and the mastering of the physical phenomena governing the propagation of a neutron population in a multiplying system like a reactor. •To provide knowledge on basic concepts of reactor physics and neutron life cycle.
Prérequis :
Mathematics: differential equations, linear algebra, linear operators, probability. Basics of nuclear physics: nuclear reactions induced by neutrons, decay processes, cross-sections definitions, kinematics.
Bibliographie :
Paul Reuss, Neutron Physics, Les Ulis, INSTN/EDPSciences, 2008. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, 1976. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Nuclear Materials | 4 | 24 | 7.5 | 12 | ||||||
Nuclear MaterialsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
24
Travaux dirigés :
7.5
Travaux pratiques :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Yann de Carlan, CEA Saclay Servane Coste, INSTN Aurélien Debelle, Université Paris-Sud, Université Paris-Saclay Frederico Garrido, Université Paris-Sud, Université Paris-Saclay Fabien Onimus, CEA Saclay Bertrand Reynier, ENSTA Paris.
Déroulement et organisation pratique :
Lectures as well as SEM and XRD are organized at INSTN Saclay; the JANNuS and SRIM labworks are performed at the CSNSM Lab (building 108, Orsay campus). Objectifs pédagogiques visés :
Contenu :
The aim of this course is to give an overall knowledge on the materials used in power nuclear reactors (Gen2&3 and innovative advanced reactors). The course describes the main materials used, for structural components, fuel cladding and fuel pellets. It addresses the main issues for nuclear applications such as radiation effects and corrosion. It is particularly focused on the detailed process of radiation damage at the microscopic scale. At a higher scale, the radiation effects on the main components (structure and fuel elements) will be detailed. The issue of in-reactor corrosion will be also described. I Lectures and exercises II Labworks
Prérequis :
Bachelor level in solid state physics and chemistry 6h hours of recall on pre-requisite on basics of materials science are provided at the beginning of the course. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Lieu(x) :
ORSAY - GIF-SUR-YVETTE |
||||||||||
Nuclear Physics | 4 | 25.5 | 16.5 | |||||||
Nuclear PhysicsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
25.5
Travaux dirigés :
16.5
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Iolanda MATEA, Matthieu LEBOIS (Université Paris Saclay).
Déroulement et organisation pratique :
This course takes place during the first part of the Semester 3 of the Master, from mid-September to end of October. It alternates Tutorials to Lectures. The students are evaluated through a written examination of 3 hours. Objectifs pédagogiques visés :
Contenu :
This is a two part course: the first part is focused on introducing the essential tools of nuclear physics while the latter concentrates on their application for specific cases relevant to nuclear reactor physics. The essential tools are comprised of cross sections, fundamental forces, mass, scales, the basic constituents of nuclear matter, nuclear potentials and the nuclear force; components of micro and macroscopic nuclear modelling and their relation to observed phenomenology; general two-body kinematics, nuclear reaction types and classifications. The mainly atomic interaction of photons, protons, neutrons, alpha particles and electrons in matter provides the transition to the second part of the course. The basic tools now taken as being acquired are used to understand spontaneous and induced radioactive growth and decay; alpha, beta, and gamma processes and modelling; the microscopic view of the neutron on different energy scales and specific reactor physics vocabulary, the basic fission process and an introduction to Breit-Wigner cross section resonance phenomenology. This course, accompanied by a series of tutorials, should allow the student to discern between the different fundamental processes and dimensions, which are subsequently studied on the macroscopic scale within the context of material physics, neutronics, and the simulation of reactor evolution.
Prérequis :
Mathematics: differential equations, linear algebra, linear operators, probability. Quantum Mechanics, Electrodynamics.
Bibliographie :
Kenneth S. Krane, Introductory Nuclear Physics, New York, John Wiley & Sons, Inc, 1988. A. Das and T. Ferbel, Introduction to Nuclear and Particle Physics, World Scientific, 2003. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments – A How-to Approach, Springer-Verlag Berlin Heidelberg GmbH, 1994. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre.
Lieu(x) :
GIF-SUR-YVETTE |
Les cours de second semestre intègrent les cours de tronc commun (dont le stage - groupe 1) et les cours spécifiques aux 5 sous-parcours du M2 (groupes 2, 3, 4, 5 et 6 pour les sous-parcours DWM, FC, NPD, NRPE et DWM, respectivement).
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au second semestre; a contrario les sous-parcours DWM et O comportent 32 ECTS au second semestre. L'ensemble des 5 sous-parcours comprennent 60 ECTS.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Calculation Codes | 3 | 30 | ||||||||
Calculation CodesLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
30
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Daniela Cancila. Objectifs pédagogiques visés :
Contenu :
Dependability of computer-based systems
Prérequis :
Basic knowledge in software engineering and programming. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février.
Lieu(x) :
PALAISEAU |
||||||||||
Systems and Equipments | 4 | 39 | ||||||||
Systems and EquipmentsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
39
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Didier Schoevaerts, F Lignini, M Pfeiffer, P Videlaine, B Lenogue, M Vaindirlis, A Chabod, C Duval, B-J Willey, A Wasylyk, J Grosmaire.
Déroulement et organisation pratique :
CM: 39h Session 1 : Mid Term examination (written or oral) (0,5) Final examination (Written or oral) (0,5) Session 2 : Final examination (written or oral) (1). Objectifs pédagogiques visés :
Contenu :
Objectives: -Explain the main general bases of the design of a nuclear power plant, the equipment and the systems, taking into account the nuclear safety requirements, the design codes and standards with their recent evolutions (regulatory and industrial context) Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Design | 2 | 24 | ||||||||
DesignLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Yves Crolet, Pierre-Alain Naze, Elie Petre-Lazar. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
From Seismology to Earthquake Engineering | 2 | 27 | ||||||||
From Seismology to Earthquake EngineeringLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
27
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Francois Semblat.
Déroulement et organisation pratique :
The organization of the various topics is described above. The course will alternate lectures with tutorials. Videos from a MOOC in the same field will also be used. The evaluation will be made through a seismic design project. Objectifs pédagogiques visés :
Contenu :
This course ranges from the science of earthquakes (seismology) to their effect on civil engineering structures (earthquake engineering). It is organized as follows:
Prérequis :
Fundamentals of: •mechanics of solids and structures, •waves and vibrations. Basics in numerical methods. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Concrete | 2 | 18 | 6 | |||||||
Materials Physics: ConcreteLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
18
Travaux pratiques :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Michel Torrenti, Adelaide Ferraille, Christophe Bernard, Benjamin Terrade.
Déroulement et organisation pratique :
6 courses (at ENSTA and Ifsttar) + 2 practical works (at Ifsttar). Objectifs pédagogiques visés :
Contenu :
1) Constructive principles of reinforced and prestressed concrete, example of the nuclear confinement vessels ·
Prérequis :
Mechanics of material. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Corrosion | 1 | 12 | ||||||||
Materials Physics: CorrosionLangues d’enseignement :
AN
ECTS :
1
Détail du volume horaire :
Cours :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Kevin Ogle. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Numerical Design | 3 | 15 | 18 | |||||||
Numerical DesignLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
15
Cours TD :
18
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Ioannis Politopoulos, Emmanuel Jeanvoine.
Déroulement et organisation pratique :
CM: 6h, TD: 12h, Projet: 15h. Objectifs pédagogiques visés :
Contenu :
Master the fundamental aspects of the finite elements methods and practice it in the context of the design of structures. Learn the different numerical algorithms especially those used in non-linear analysis of structures. Be able to solve highly non linear coupled problem with a degree of precision difficult to reach by classical methods (This fact is fundamental for the nuclear domain).
Prérequis :
Good level in applied mathematics (analysis, algebra, optimization) Basic knowledge in software engineering and programming Elasticity (3D, beams, plates and shells) Heat conduction Plasticity Linear dynamics Non-linear dynamics Fatigue and fracture. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
Le M2 comprend 5 sous-parcours. Le premier semestre comprend 4 modules de tronc commun (pour un total de 12 ECTS) commun au 5 sous-parcours (groupe 1). Le groupe 2 correspond à un cours commun à 4 sous-parcours (cours de Risk management). Le groupe 3 est commun aux sous-parcours DWM et FC. Le groupe 4 est commun aux sous-parcours NPD et O. Le groupe 5, 6, 7, 8 et 9 sont spécifiques aux sous-parcours DWM, FC, NPD, NRPE, et O, respectivement. Enfin le groupe 10 est commun aux sous-parcours NPD, NRPE, et O.
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au premier semestre; par contre les sous-parcours DWM et O comportent 28 ECTS au premier semestre.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Fuel: from Mine to Reactor | 3 | 14 | 7 | |||||||
Fuel: from Mine to ReactorLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
14
Travaux dirigés :
7
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
G. Cote (ENSCP), A. Selmi (Orano), D. Viguier (Orano), A. Ndiaye (Orano), P. Guillermier (Framatome).
Déroulement et organisation pratique :
Cours ou TD en classe complète. Objectifs pédagogiques visés :
Contenu :
Presents the different types of nuclear fuels. Delivers scientific basis to understand the different steps of the front-end of the nuclear fuel cycle, from mining activities to fuel fabrication. 1-Introduction to nuclear reactors – EDF reactors
Prérequis :
Solution chemistry. Période(s) et lieu(x) d’enseignement :
Période(s) :
Octobre - Novembre - Décembre - Janvier.
Lieu(x) :
PARIS |
||||||||||
Separation and Recycling | 4 | 30 | 3 | |||||||
Separation and RecyclingLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
30
Travaux dirigés :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
P. Moisy, B. Dinh, M. Miguirditchian, S. Grandjean, G. Cote, G. Lefèvre. Objectifs pédagogiques visés :
Contenu :
Presents the main stakes of nuclear spent fuel recycling 1-The nuclear spent fuel (content, potential nocivity and energetic attractivity) 2-Spent fuel management options (recycling options, other options) 3-Uranium and plutonium recovery : principles and processes 4-Minor actinides recovery 5 – From solvated recovered elements to solid compouds 6 – Recycling ("transmuting") actinides into reactors
Prérequis :
Solution chemistry. Période(s) et lieu(x) d’enseignement :
Période(s) :
Novembre - Décembre - Janvier.
Lieu(x) :
PARIS |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Risk-informed decision making | 4 | 20 | 10 | |||||||
Risk-informed decision makingLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
20
Travaux dirigés :
10
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
FOUQUET Frédéric ZENG Zhiguo GROSSETETE Alain.
Déroulement et organisation pratique :
Half of the sessions are given in CentraleSupélec while the other half in INSTN. There will also be practical work on PWR simulator. Objectifs pédagogiques visés :
Contenu :
CentraleSupélec (21h) INSTN (21h)
Prérequis :
Elementary knowledge of calculus, matrix theory, probability and statistics, PWR basic knowledge.
Bibliographie :
Lecture and reading materials from the lecturer. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre - Janvier.
Lieu(x) :
GIF-SUR-YVETTE Saclay |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Calculation Codes 1 | 2 | 18 | ||||||||
Calculation Codes 1Langues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours TD :
18
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Mathieu Arquier (STRAINS).
Déroulement et organisation pratique :
3 full days. Objectifs pédagogiques visés :
Contenu :
Objectives Content
Prérequis :
Thermodynamics Basics Continuum Mechanic Basics. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier.
Lieu(x) :
Ecole des Ponts (Champs sur Marne) |
||||||||||
Calculation Codes 2 | 2 | 15 | ||||||||
Calculation Codes 2Langues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours TD :
15
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Sebastien Gervillers (ENPC).
Déroulement et organisation pratique :
5 x 3 lectures. Objectifs pédagogiques visés :
Contenu :
This course is the follow-up of Calculations Code 1 with a focus on Numerical Project.
Prérequis :
Calculations Code 1. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
Ecole des Ponts ParisTech (Champs sur Marne) |
||||||||||
Methods of Decommissioning | 4 | 27 | 18 | |||||||
Methods of DecommissioningLangues d’enseignement :
FR/AN
Intitulé de l’UE en anglais :
Methods of Decommissioning
ECTS :
4
Détail du volume horaire :
Cours :
27
Travaux dirigés :
18
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Frédérique Damerval (Tech-y-tech) Eric Gouhier (CEA) Yvon Desnoyers (géovariances) Vincent Testard Jerome Ducos (CEA) Denis Giraud (ORANO) Magali Benchikhoune Fabrice Moggia.
Déroulement et organisation pratique :
1/Inventaire physique et déchet d'une INB ( méthodologie et moyens de caractérisation) 2/Scénarios de démantèlement – méthodologie 3/Methode geostatistique 4/Partie pratique : réalisation d'une cartographie géostatistique 2D d'une pollution radiologique avec le logiciel Kartotrak en salle informatique 5/OREKA DEM + optimisation des scénarios de démantèlement par la simulation 3D 6/Confinement et ventilation nucléaire 7/Techniques et procédés de décontamination 8/Désamiantage en milieu nucléaire 9/Decommissioning a fusion reactor : specificities, strategy and main related risks 10/Decommissioning and radioactive materials transportation risks, decommissioning and fire risks 11/Moyens : Scan 3D, autres - Illustrations 12/Etude de cas 13/Exam. Objectifs pédagogiques visés :
Contenu :
Objectives Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
Ecole des Ponts ParisTech (Champs sur Marne) |
||||||||||
Waste Management | 4 | 51 | 50 | |||||||
Waste ManagementLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
51
Projet :
50
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Xavier VITART (CEA) Frédérique HOURCADE (Orano) Muriel FIRON (Orano).
Déroulement et organisation pratique :
All the lessons are performed by professionals ( ANDRA, CEA, ORANO, EDF, companies), deeply involved in Decommissioning and Waste Management projects or R&D activities in the field. The pedagogical methods ara funded on learning by problems and by projects, with a high level of implication of the students, through interactions with the teachers, and through projects studies in groups. Visits are organised in order to confrontate the students with the field realities. Objectifs pédagogiques visés :
Contenu :
The aim of this module is to give the students all the necessary tools, from physical, regulatory and, practical points of view, related to the management of wastes produced by the cleaning and the dismantling of nuclear facilities. The first lessons deals with the different categories of waste (short, medium and long lived, low,medium and high activities), the regulations ( french and international point of view), the role of ANDRA (french national agency for the final managing of radiaoactive waste), and the way to characterise the waste inside their different matrix (methodology, instrumentation, « reference spectra »). The second part deals with the practical way to manage the radiaoctive wastes and send them to ANDRA. Particular attention, through real cases studies, is given to the french concept of « waste zoning ».
Prérequis :
Pre-requisite are the fundamentals of the engineering sciences (physics, chemical engineering, mechanical engineering), and a good knowledge of the fundamentals of radioactivity (from the nature of radioactivity emissions to basic principles of radioprotection).
Bibliographie :
- Policies and Strategies for the Decommissioning of Nuclear and Radiological Facilities IAEA Nuclear Energy Series NW-G-2.1 - Guide de l'ASN n°6 : Arrêt définitif, démantèlement et déclassement des installations nucléaires de base - Guide n°14 de l'ASN r. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Process, Simulation and Process Control | 3 | 23 | 2 | 6 | ||||||
Process, Simulation and Process ControlLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
23
Travaux dirigés :
2
Travaux pratiques :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
C. Sorel, D. Guillaumont, T. Dumas, B. Dinh, G. Kritchik, T. Vercouter, H. Isnard, S. Charton, H. Roussel, F. Lamadie, C. Rivier.
Déroulement et organisation pratique :
Cours et Cours/TD à Chimie ParisTech. TP au CEA Saclay et CEA Marcoule. Objectifs pédagogiques visés :
Contenu :
1. Introductory lecture to relate the significance of analytical and modeling tools within the current and future recycling processes. 2. Molecular modeling of actinide – ligands interactions: principles, tools, results, key challenges for actinides 3. Spectroscopic understanding of actinide environment: principles, tools, perspectives. Focus on EXAFS informations 4. Modelling and simulation of solvent extraction processes 7. Isotopic measurements in nuclear industry: analytical techniques and applications for nuclear fuel cycle. 8.Solvent extraction technology: Contactors Design & Modelling
Prérequis :
Solution Chemistry. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars - Avril.
Lieu(x) :
PARIS |
||||||||||
Radioactive Waste Management and Repository Design | 3 | 21 | 6 | |||||||
Radioactive Waste Management and Repository DesignLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
21
Travaux dirigés :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
B. Yven, B. Madé, C. Martin, G. Pépin, B. Cochepin. Objectifs pédagogiques visés :
Contenu :
The course is formed by four complementary parts: (1) an overview of the radioactive waste management issues, with their current solutions and prospective; (2) a focus on radionuclides behaviour in porous media, illustrated by practical applications; (3) a presentation of the multi-disciplinary approach to move, using numerical simulation, from phenomenological understanding to global performance and safety assessment; (4) science and society. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars - Avril.
Lieu(x) :
PARIS |
||||||||||
Waste Containment Materials | 3 | 21 | 12 | |||||||
Waste Containment MaterialsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
21
Travaux dirigés :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
F. Bart, C. Roussel, O. Pinet, F. Frizon, F. Lemont, C. Ferry, D. Caurant, O. Majérus. Objectifs pédagogiques visés :
Contenu :
1.Introduction to present a general overview of the content of WAST Course : the general ideas and the presentation of the content of the modulus is given during the first hour and to work on real cases 2.Waste Management resulting from Nuclear Used Fuel : description of the main nuclear waste routes to treat and condition HLW and ILW explain to yield to a satisfactory wasteform 3.Nuclear Glasses : historical and scientific elements that led to the choice of glasses for nuclear high-level waste containment. 4.Cementitious matrices : historical and scientific elements that led to the choice of cementitious matrices for nuclear low and intermediate level waste containment 5.High Temperature Processes : presentation of the different processes used to treat high and intermediate level burnable liquid and solid waste. 6.Spent Fuel : physical and chemical properties of spent nuclear fuel after irradiation in reactor, and mechanisms of spent fuel evolution during the storage phase and under disposal conditions 7.Glass chemistry applied to nuclear waste containment : physical and chemical properties of multicomponent glasses as a function of their composition and long-term chemical durability of nuclear glasses.
Prérequis :
Inorganic Chemistry. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars - Avril.
Lieu(x) :
PARIS |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Calculation Codes | 3 | 30 | ||||||||
Calculation CodesLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
30
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Daniela Cancila. Objectifs pédagogiques visés :
Contenu :
Dependability of computer-based systems
Prérequis :
Basic knowledge in software engineering and programming. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février.
Lieu(x) :
PALAISEAU |
||||||||||
Systems and Equipments | 4 | 39 | ||||||||
Systems and EquipmentsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
39
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Didier Schoevaerts, F Lignini, M Pfeiffer, P Videlaine, B Lenogue, M Vaindirlis, A Chabod, C Duval, B-J Willey, A Wasylyk, J Grosmaire.
Déroulement et organisation pratique :
CM: 39h Session 1 : Mid Term examination (written or oral) (0,5) Final examination (Written or oral) (0,5) Session 2 : Final examination (written or oral) (1). Objectifs pédagogiques visés :
Contenu :
Objectives: -Explain the main general bases of the design of a nuclear power plant, the equipment and the systems, taking into account the nuclear safety requirements, the design codes and standards with their recent evolutions (regulatory and industrial context) Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Design | 2 | 24 | ||||||||
DesignLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Yves Crolet, Pierre-Alain Naze, Elie Petre-Lazar. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
From Seismology to Earthquake Engineering | 2 | 27 | ||||||||
From Seismology to Earthquake EngineeringLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
27
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Francois Semblat.
Déroulement et organisation pratique :
The organization of the various topics is described above. The course will alternate lectures with tutorials. Videos from a MOOC in the same field will also be used. The evaluation will be made through a seismic design project. Objectifs pédagogiques visés :
Contenu :
This course ranges from the science of earthquakes (seismology) to their effect on civil engineering structures (earthquake engineering). It is organized as follows:
Prérequis :
Fundamentals of: •mechanics of solids and structures, •waves and vibrations. Basics in numerical methods. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Concrete | 2 | 18 | 6 | |||||||
Materials Physics: ConcreteLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
18
Travaux pratiques :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Michel Torrenti, Adelaide Ferraille, Christophe Bernard, Benjamin Terrade.
Déroulement et organisation pratique :
6 courses (at ENSTA and Ifsttar) + 2 practical works (at Ifsttar). Objectifs pédagogiques visés :
Contenu :
1) Constructive principles of reinforced and prestressed concrete, example of the nuclear confinement vessels ·
Prérequis :
Mechanics of material. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
PALAISEAU |
||||||||||
Materials Physics: Corrosion | 1 | 12 | ||||||||
Materials Physics: CorrosionLangues d’enseignement :
AN
ECTS :
1
Détail du volume horaire :
Cours :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Kevin Ogle. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
||||||||||
Numerical Design | 3 | 15 | 18 | |||||||
Numerical DesignLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
15
Cours TD :
18
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Ioannis Politopoulos, Emmanuel Jeanvoine.
Déroulement et organisation pratique :
CM: 6h, TD: 12h, Projet: 15h. Objectifs pédagogiques visés :
Contenu :
Master the fundamental aspects of the finite elements methods and practice it in the context of the design of structures. Learn the different numerical algorithms especially those used in non-linear analysis of structures. Be able to solve highly non linear coupled problem with a degree of precision difficult to reach by classical methods (This fact is fundamental for the nuclear domain).
Prérequis :
Good level in applied mathematics (analysis, algebra, optimization) Basic knowledge in software engineering and programming Elasticity (3D, beams, plates and shells) Heat conduction Plasticity Linear dynamics Non-linear dynamics Fatigue and fracture. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
PALAISEAU |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Advanced Thermal-hydraulics | 4 | 20.5 | 3.5 | 9 | ||||||
Advanced Thermal-hydraulicsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
20.5
Travaux dirigés :
3.5
Cours TP :
9
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Eric ROYER, Patrick DUMAZ (CEA).
Déroulement et organisation pratique :
This 33-hour module consists of 20.5h of course, 3.5h of tutorials and 9h according to a « project » approach. . The project is based on the implementation of a nuclear thermal-hydraulics calculation code. The instructions, details regarding the code and the supervision of the student works needs the presence of students and experts together for 9h. In addition, each student has to lead his own investigations and calculation to treat the subject set by the teachers (computer room in free access).. A report is expected and constitute a component of the global mark related to this module. The knowledge assessment is completed by a written exm. Objectifs pédagogiques visés :
Contenu :
Advanced Thermal Hydraulics provides a deep knowledge of single- and two-phase flows encountered in nuclear reactors, particularly for design and safety studies. - Advanced fluid mechanics: turbulence modeling (RANS, LES, introduction to DNS), introduction to CFD computer codes, benefits and limitations of these codes. - Nuclear reactor design: introduction to gas coolant and liquid metal coolant, comparison with LWRs. - Advanced two-phase flows: introduction to multi-scale modeling from DNS to porous media), equations systems for two-phase flows (from HEM to multi-fields), condensation with non-condensable gas, CHF prediction, two-phase flow instabilities (Ledinegg instability, density wave oscillations, BWR instabilities), critical mass flow rate (particularly for application to LOCAs). - Thermal Hydraulics for severe accidents: hydrogen combustion, corium behavior (in- and ex-vessel phenomena).
Prérequis :
The previous semester module « Thermal-Hydraulics » (S3-D-O-R-FLUI) is a convenient prerequisite.
Bibliographie :
N.E. Todreas, M.S. Kazimi, Nuclear systems I, Thermal Hydraulic Fundamentals, Taylor & Francis. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Multiphysics and Uncertainties | 2 | 12 | 3 | |||||||
Multiphysics and UncertaintiesLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
12
Cours TP :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Jean-Baptiste BLANCHARD, CEA Saclay Davide MANCUSI, CEA Saclay Cyril PATRICOT, CEA Saclay Andrea ZOIA, CEA Saclay.
Déroulement et organisation pratique :
The course is delivered successively by three teachers for the topics associated to multiphysics and those corresponding to uncertainty, respectively: •Multiphysics (7.5h, Cyril PATRICOT): oCours : 4.5h oCours-TP : 3h •Uncertainty (4.5h, Jean-Baptiste BLANCHARD): oCours : 4.5h •Coupling with Monte Carlo (3h, Andrea ZOIA): oCours : 3h. Objectifs pédagogiques visés :
Contenu :
Initiation to the multiphysics approaches integrating mainly thermal-hydraulics, neutronics and thermal-mechanics:
Prérequis :
Mathematics: Notions on differential equations, numerical analysis, linear algebra. Physics: Notions on thermal-hydraulics, neutronics, thermics.
Bibliographie :
Keyes, David E., et al. "Multiphysics simulations: Challenges and opportunities." The International Journal of High Performance Computing Applications 27.1 (2013): 4-83. Saltelli, A., et al. Global Sensitivity Analysis: The Primer. Wiley, New York, 2008. Sjenitzer, B. L., et al. "Coupling of dynamic Monte Carlo with thermal-hydraulic feedback." Annals of Nuclear Energy 76 (2015): 27-29. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Neutronics 2: Nuclear Reactor Core Calculations | 4 | 28.5 | 6 | 24 | 4.5 | |||||
Neutronics 2: Nuclear Reactor Core CalculationsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
28.5
Cours TD :
6
Cours TP :
24
TP/TD :
4.5
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Stéphane BOURGANEL, Antoine COLLIN, Cheikh DIOP, Hervé GOLFIER, Alexis JINAPHANH, Yi-Kang LEE, Emiliano MASIELLO, Simone SANTANDREA (CEA Saclay), Eric DUMONTEIL (IRSN).
Déroulement et organisation pratique :
The course is organized according to the following architecture: •Deterministic transport course part 1: 16,5h (Hervé GOLFIER) •Deterministic transport course part 2: 12h (Simone SANTANDREA) •Computational training on numerical methods: 4,5h (Emiliano MASIELLO) oPratical work using APOLLO2 neutronics code/study of physical effects: 9h (Antoine COLLIN) •Practical work using TRIPOLI-4® Monte Carlo transport code: 6h (Cheikh DIOP) oGeneral presentation and primer use: 3h (Yi-Kang LEE, Stéphane BOURGANEL) ; oFixed source problem/radiations strong attenuation: 6h (Yi-Kang LEE, Stéphane BOURGANEL) oEigenvalue problem/core physics-Criticality studies: 6h (Éric DUMONTEIL, Alexis JINAPHANH) The module is evaluated through exams related to the different courses and through practical work reports related to APOLLO2 and TRIPOLI-4® codes. Objectifs pédagogiques visés :
Contenu :
The general aim of this module is:
Prérequis :
Mathematics: differential equations, linear algebra, linear operators, probability, statistics. Neutronics 1 content course.
Bibliographie :
Paul Reuss, Neutron Physics, Les Ulis, INSTN/EDPSciences, 2008. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, 1976. Alain Hébert, Applied Reactor Physics, Montréal, Presses internationales Polytechnique, 2009. T. J. Akai, “Applied Numerical Methods for Engineers”, 1994, J. Wiley & Sons Inc. llya M. Sobol, A Primer for the Monte Carlo Method, London, CRC Press, 1994. J. Spanier and E. M. Gelbard, Monte-Carlo Principles and Neutron Transport Problems, USA, Addison-Wesley Publishing Company, 1969. Neutronics, A Nuclear Energy Division Monograph, ouvrage collectif Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Reactor Physics and Simulation | 2 | 3 | 24 | |||||||
Reactor Physics and SimulationLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Travaux pratiques :
3
Cours TP :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Louis -Joseph BONNAUD, Frédéric FOUQUET, Hubert GRARD (CEA/INSTN).
Déroulement et organisation pratique :
The course is composed of both “Course-Tutorial” and “Course-Practical Work” for each following items: Applied neutronics: oTemperature effects: 3h oKinetics describing transient situations: 3h oPoisons (xenon and samarium) and xenon oscillation: 3h. oCoupling between primary and secondary circuits which involved both the steam flow and the reactivity: 3h. oPractical implementation via a 3D virtual reality device (fuel loading operation for instance): (“Practical Work”): 3h. Applied system thermalhydraulics: oStart-up of a PWR: 3h oThermosiphon system behavior: 3h oPrimary circuit accident: small, intermediate, large pipe breaks: 3h oSecondary circuit accidents: (link with the "Applied neutronics" part with respect to the thermalhydraulics/neutronics coupling): 3h. Objectifs pédagogiques visés :
Contenu :
The objective is to study the practical aspects of reactor control and operation. The module is divided in two main parts: •The applied system thermalhydraulics considering both the PWR normal operation and accidental situations using a sophisticated simulator based on the CATHARE code. The aim is to be able to describe the thermo-hydraulic behavior of the primary circuit in normal and accidental operation and to decompose the main stages of the start of a PWR on the one hand, and accidents studied on the other hand.
Prérequis :
Basics knowledge acquired in nuclear physics (beta-neutron decay, precursors properties…), Neutronics 1, Thermalhydraulics, PWR Functional Description, Introduction to Safety.
Bibliographie :
Paul Reuss, Neutron Physics, Les Ulis, INSTN/EDPSciences, 2008. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, 1976. N.E. Todreas, M.S. Kazimi, Nuclear systems I, Thermal Hydraulic Fundamentals, Taylor&Francis. Période(s) et lieu(x) d’enseignement :
Période(s) :
Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Maintenance | 4 | 22 | 8 | 12 | ||||||
MaintenanceLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
22
Travaux dirigés :
8
Travaux pratiques :
12
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Zeng Zhiguo, Fang Yiping.
Déroulement et organisation pratique :
IndexContentHours 1Maintenance: basic concepts3 2Corrective maintenance: modelling, analysis and optimization (I)3 3Corrective maintenance: modelling, analysis and optimization (II)3 4Scheduled maintenance: Age-based and block replacement (I)3 5Scheduled maintenance: Age-based and block replacement (II)3 6Condition-based and predictive maintenance through PHM (I)3 7Condition-based and predictive maintenance through PHM (II)3 8Condition-based and predictive maintenance through PHM (III)3 9Resilience modelling and optimization3 10Review and exercise3 The course will be given at CentraleSupélec. There is no written examination for this course. Grading will be based on a course project. Objectifs pédagogiques visés :
Contenu :
Course Descriptions: Objectives:
Prérequis :
Elementary knowledge of reliability engineering, calculus, matrix theory, probability and statistics.
Bibliographie :
Lecture and reading materials from the lecturer. · Zio E. An introduction to the basics of reliability and risk analysis. World scientific; 2007. · Rausand M, Arnljot Høyland. System reliability theory: models, statistical methods, and applications. John Wiley & Sons; 2004. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Reactor Piloting | 2 | 12 | 12 | |||||||
Reactor PilotingECTS :
2
Détail du volume horaire :
Cours :
12
Travaux pratiques :
12
Modalités d'organisation et de suivi :
Coordinateur :
|
||||||||||
Safety in operation | 3 | 36 | 6 | |||||||
Safety in operationLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
36
Travaux dirigés :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
DEBES Michel, PAUTROT Patrice, HOROWITZ Emmanuel, MARQUIS Bruno.
Déroulement et organisation pratique :
The course will be given at CentraleSupélec. Objectifs pédagogiques visés :
Contenu :
Objectives: Contents:
Prérequis :
General knowledge in neutronics, thermal-hydraulic, mechanics.
Bibliographie :
IAEA standards; nuclear physics; nuclear accidents. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Simulation, Modelling and Control for Nuclear Power Systems | 4 | 30 | 21 | |||||||
Simulation, Modelling and Control for Nuclear Power SystemsLangues d’enseignement :
AN
ECTS :
4
Détail du volume horaire :
Cours :
30
Travaux dirigés :
21
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
CANCILA Daniela CAMMI Antonio CALMON Pierre.
Déroulement et organisation pratique :
The course will be given at CentraleSupélec. Objectifs pédagogiques visés :
Contenu :
The course starts with a General Introduction; History of stages and technical evolution of French PWR I&C Design; Structure of the control-command N4 I&C system (1450 MW); and Software Aspects of the protection system. Two lessons are devoted to OASIS technologies and an OASIS-based Qualified Display System for TXS platform. Finally, the course addresses the Nuclear Accidents (TMI-2, Chernobyl, Fukushima) under the social impact umbrella. A brief discussion on the technical details and the safety regulation (IEC 60880, IEC 62138, IEC 61513) is provided. Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
Les cours de second semestre intègrent les cours de tronc commun (dont le stage - groupe 1) et les cours spécifiques aux 5 sous-parcours du M2 (groupes 2, 3, 4, 5 et 6 pour les sous-parcours DWM, FC, NPD, NRPE et DWM, respectivement).
Par ailleurs les sous-parcours FC, NPD et NRPE comportent tous 30 ECTS au second semestre; a contrario les sous-parcours DWM et O comportent 32 ECTS au second semestre. L'ensemble des 5 sous-parcours comprennent 60 ECTS.
Matières | ECTS | Cours | TD | TP | Cours-TD | Cours-TP | TD-TP | A distance | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Introduction to Safety. Criticality-Safety | 3 | 17 | 3 | 4 | ||||||
Introduction to Safety. Criticality-SafetyLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
17
Travaux dirigés :
3
Cours TD :
4
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Frédéric FOUQUET (CEA/INSTN) Grégory CAPLIN (Orano) Mathieu MILIN (IRSN).
Déroulement et organisation pratique :
Because it is a prerequisite for the “Criticality-Safety” course the “Introduction to Safety” course is the first to be taught in the module. The 12-hour “Introduction to Safety” part consists of a 11-hour “course” part and a 1-hour “course-tutorial” part each addressed to the full-class. The 12-hour “Criticality-Safety” part consists of a 6-hour “course” part addressed to the full-class, a 3-hour “course-tutorial” part addressed to the half-class (two student groups), and a 3-hour “tutorial” part addressed to the half-class . Such modalities strength the interaction students/teachers and make the learning more effective. Objectifs pédagogiques visés :
Contenu :
The all nuclear activity sectors are interested by the operationnal problematics of the Safety and Criticality-Safety treated. Introduction Operation and Safety Probabilistic safety assessment Emergency preparedness Enhancing safety 2. Criticality-Safety - To understand the consequences and the phenomenology of an inadvertent criticality in a fuel cycle facility (except operating nuclear cores) or during a transport of fissile materials,
Prérequis :
Prerequisites for « Introduction to Safety »: Basic knowledge on PWR (components, systems and operation). Prerequisites for « Criticality-Safety »: Basics Neutronics. « Introduction to Safety » course is also a prerequisite.
Bibliographie :
1. “Introduction to Safety” part: IAEA website : « safety of nuclear power plants » documents •https://www.iaea.org/search/google/safety%20of%20nuclear%20power%20plants •https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html 2.“Criticality-Safety” part: * T.P. McLaughlin et Al., “A Review of Criticality Accidents”, 2000 Revision, LA-13638, * “Analysis Guide – Nuclear Criticality Risks and their prevention in plants and laboratories”, DSU/SEC/T/2010-334, http://www.irsn.fr/EN/publications/technical-publications/Documents/IRSN_report_nuclear_criticality_risks.pdf. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Radiation Protection | 3 | 10.5 | 12 | 6 | ||||||
Radiation ProtectionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
10.5
Cours TD :
12
Cours TP :
6
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Philippe MASSIOT (INSTN) François TROMPIER, Estelle Davesne (IRSN) Cheikh DIOP (CEA Saclay) Nathalie DRAY (Framatome).
Déroulement et organisation pratique :
This module consists of 28.5h/student. The teaching implements a wide range of pedagogical methods including labs, calculation codes and serious games, a training pilot facility. According to the pedagogical method used the class has to be divided into two 25-student groups or four 12-student groups. Objectifs pédagogiques visés :
Contenu :
Complete knowledge and operational skills in Radiation Protection are provided by implementing a wide range of approaches. 1. Using the international regulation frame of reference 2. Describe the main uses of radiation in various fields 3. Apply the three means of protection against ionizing radiation 4. Characterize a workplace study: 5. Describe the external dosimetry concepts: 6. Apply the external dosimetric concepts: 7. Explain the principles of internal dosimetry: 8. Identify the biological effects of ionizing radiation: 9. Use different detection devices: 10. Study the accidental / incidental situations:.
Prérequis :
Nuclear physics: radioactivity, emission intensity, directly and indirectly ionizing particles, beta particles, x-rays, gamma-rays, cross sections of interaction. - Interaction of radiation with matter: • Interaction of photon with matter: •Interaction of light and heavy charge particles with matter •Interaction of neutrons with matter: elastic and inelastic scattering, capture, fission, transmission law.
Bibliographie :
- Introduction to radiological physics and radiation dosimetry, F. H. Attix, Wiley, 1986. - ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Oxford: Elsevier; ICRP Publication 103; 2007. - Knoll, G. F. Radi. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Energy Transition and Flexibility | 2 | 15 | ||||||||
Energy Transition and FlexibilityLangues d’enseignement :
AN
ECTS :
2
Détail du volume horaire :
Cours :
15
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Gilles MATHONNIERE (CEA Saclay). A compléter.
Déroulement et organisation pratique :
This 15-hour module is divided into five three-hour slots. Each slot is devoted to one part of the course. Objectifs pédagogiques visés :
Contenu :
The educational objective of this teaching module is to raise student’s awareness to the flexibility aspects which will have an increasingly influential role especially for electricity. The complementarity of variable renewable energy sources (VRE) and nuclear will be addressed both technically and economically. •The power electric grid, flexibility, the future role of nuclear power. Presentation of the electrical network and its various constraints to function properly. Presentation and discussion on the future decarbonated electrical mix, the flexibility of nuclear power will play a leading role. Some ways of improvement for the future will also be mentioned (SMR, PWR without boron, Fast reactors). •Economic aspects. The consequences from an economic point of view are analyzed. •The cogeneration. Presentation of the heat market, heat distribution networks, the potential of nuclear reactors in this field and some feedback from projects carried out abroad. •Hydrogen production. Presentation of the hydrogen market, the cost of hydrogen production by electrolysis and the possibility of finding a business model for a nuclear reactor based on both the production of electricity and hydrogen.
Prérequis :
No specific prerequisite. Interest for both economy and electricity supply is desirable.
Bibliographie :
•The costs of Decarbonisation : System Costs with High Shares of Nuclear and Renewables OECD/NEA •Projected Costs of Electricity Generation IEA/NEA •Cany, C., Mansilla, C., Mathonnière, G., & da Costa, P. (2018a). Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix. Energy, 150, 544–555. •Leurent, M., Jasserand, F., Locatelli, G., Palm, J., Rämä, M., & Trianni, A. (2017). Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland. Energy Policy, 107, 138–150. •Tlili, O., Cany, C Période(s) et lieu(x) d’enseignement :
Période(s) :
Janvier - Février - Mars.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Nuclear Fuel Cycles. Nuclear Reactor Systems | 3 | 3 | 24 | |||||||
Nuclear Fuel Cycles. Nuclear Reactor SystemsLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Travaux dirigés :
3
Cours TD :
24
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Pascal DANNUS (CEA.INSTN) Frédéric DAMIAN, Richard LENAIN, Jean-Baptiste THOMAS (CEA/DEN).
Déroulement et organisation pratique :
1.Nuclear Fuel Cycles part: The 6h of “course-tutorial” (“cours-TD” in French) slots will be delivered by two teachers together in front of the full class. The 3h of tutorial (“TD” in French) will be addressed 2 half-class (2 groups of students) in parallel. 2.Nuclear Reactor Systems part: 18 h of “course-tutorial” will be delivered at a time. Three teachers are successively involved with the following distribution: a.Introduction, Gen-IV, Design and Prospects (J.B. Thomas) b.Gen-IV HTR, Gen-I reactors (including Gas-cooled reactors, heavy water reactors and RBMK), Experimental Reactors (R. Lenain) c.Gen-III including BWR, Innovation and Multi-recycling, toward Gen-IV nuclear fleet (F. Damian). Objectifs pédagogiques visés :
Contenu :
1.Nuclear Fuel Cycles : 2.Nuclear Reactor Systems
Prérequis :
Basics of U chemistry. Basics of Radiation Protection. PWR functional description. Basics of system thermodynamics, of neutronics, thermal hydraulics, fuel cycle.
Bibliographie :
“Treatment and recycling of spent nuclear fuel; actinide partitioning – Application to waste management”, Monographie CEA/DEN, Editions Le Moniteur, 2008 “Nuclear Reactor Systems”, collection Génie Atomique, EDP Sciences (2016) Several books from Monographie CEA/DEN, Editions Le Moniteur, each of them dedicated to a specific system. Période(s) et lieu(x) d’enseignement :
Période(s) :
Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
PWR Functional Description | 3 | 21 | 3 | |||||||
PWR Functional DescriptionLangues d’enseignement :
AN
ECTS :
3
Détail du volume horaire :
Cours :
21
Travaux dirigés :
3
Modalités d'organisation et de suivi :
Coordinateur :
Equipe pédagogique :
Louis-Joseph BONNAUD (CEA/INSTN) Experts EDF, Framatome.
Déroulement et organisation pratique :
This 24-hour module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. It consists of 21h of courses addressed to the full-class and 3h of tutorial addressed to half-class (two groups). After following the teachings of the module, students will be able to describe the general organization of PWR in the context of a normal operation including: -the functional role of the components of the nuclear island as well as the main physical phenomena associated; -nuclear auxiliary fluid systems; -the conventional island. They will have assimilated the economic issues related to the thermodynamic performance of water-steam conversion cycle, security and economic issues related to the fuel and its management. The concepts of Burn Up, hotspot factor, loading pattern associated with safety criteria are thoroughly described. Objectifs pédagogiques visés :
Contenu :
This module describes the power reactors. It focuses on PWR widely used in the world, on which the French nuclear industry has a good feedback. The courses provide skills and reinforce the student’s interest whatever its specialization in the nuclear field. -Architecture and components
Prérequis :
General physics, thermodynamics, fluid mechanism and heat transfert.
Bibliographie :
Barré, B. et al. (2016). Nuclear Reactor Systems. Edp Sciences. Reuss, Paul (2008). Neutron physics. Edp Sciences. Période(s) et lieu(x) d’enseignement :
Période(s) :
Septembre - Octobre - Novembre - Décembre.
Lieu(x) :
GIF-SUR-YVETTE |
||||||||||
Internship | 18 | |||||||||
InternshipECTS :
18
Modalités d'organisation et de suivi :
Coordinateur :
|
-
Lettre de motivation.
(Il est demandé de candidater obligatoirement à au moins 2 parcours du M2 La lettre de motivation doit préciser de façon argumentée le ou les parcours de M2 souhaités.) -
Tous les relevés de notes des années/semestres validés depuis le BAC à la date de la candidature.
-
Curriculum Vitae.
-
Attestation de niveau d'anglais (obligatoire pour les non anglophones).
-
Dossier VAPP (obligatoire pour toutes les personnes demandant une validation des acquis pour accéder à la formation) https://www.universite-paris-saclay.fr/formation/formation-continue/validation-des-acquis-de-lexperience.
-
Document justificatif des candidats exilés ayant un statut de réfugié, protection subsidiaire ou protection temporaire en France ou à l’étranger (facultatif mais recommandé, un seul document à fournir) :
- Carte de séjour mention réfugié du pays du premier asile
- OU récépissé mention réfugié du pays du premier asile
- OU document du Haut Commissariat des Nations unies pour les réfugiés reconnaissant le statut de réfugié
- OU récépissé mention réfugié délivré en France
- OU carte de séjour avec mention réfugié délivré en France
- OU document faisant état du statut de bénéficiaire de la protection subsidiaire en France ou à l’étranger.
This master's program offers additional services. This program requires specific tuition fees in addition to the mandatory fees : https://www.universite-paris-saclay.fr/admission/droits-dinscription