Séminaire de Anna Rosławska EN MODE HYBRIDE

2022-03-29 11:00 2022-03-29 12:00 Séminaire de Anna Rosławska EN MODE HYBRIDE

Plasmon-exciton coupling and resonant energy transfer probed at the sub-molecular level

par Anna Rosławska

Institut de Physique et Chimie des Matériaux de Strasbourg

Light-matter interaction plays a crucial role in the quantum properties of light emission from single molecules, and in electron-to-photon and photon-to-electron energy conversions. Such mechanisms are usually probed using optical methods, which are, however, spatially limited by diffraction to a few hundred nanometers. On the other hand, scanning tunneling microscopy (STM) routinely reaches picometre spatial scale. Recent works have shown that the tunneling current of an STM can be used to excite the intrinsic luminescence of individual molecules enabling light-matter interaction studies with unprecedented resolution. In the talk, I will first discuss how the STM-induced luminescence allows us to map the optical properties of single molecules with nearly atomic precision thanks to the coupling between excitons and local electromagnetic fields. With this approach, we are also able to mimic structures employed by photosynthetic systems and study sub-nm details of the energy transfer process using molecules as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. Such control over optical properties at the molecular level is possible using only this hyper-resolution optical approach, which does not suffer from ensemble averaging.

Pour demander le lien (avant le 29, 10h30) :
http://www.ismo.universite-paris-saclay.fr/spip.php?article2613

Orsay
Thematic : Research

Plasmon-exciton coupling and resonant energy transfer probed at the sub-molecular level

  • Public
    Réservé à certains publics
  • Event type
    Conférence / séminaire / webinaire
  • Dates
    Tuesday 29 March, 11:00
    11:00 am - 12:00 pm
  • Location
    Orsay

Plasmon-exciton coupling and resonant energy transfer probed at the sub-molecular level

par Anna Rosławska

Institut de Physique et Chimie des Matériaux de Strasbourg

Light-matter interaction plays a crucial role in the quantum properties of light emission from single molecules, and in electron-to-photon and photon-to-electron energy conversions. Such mechanisms are usually probed using optical methods, which are, however, spatially limited by diffraction to a few hundred nanometers. On the other hand, scanning tunneling microscopy (STM) routinely reaches picometre spatial scale. Recent works have shown that the tunneling current of an STM can be used to excite the intrinsic luminescence of individual molecules enabling light-matter interaction studies with unprecedented resolution. In the talk, I will first discuss how the STM-induced luminescence allows us to map the optical properties of single molecules with nearly atomic precision thanks to the coupling between excitons and local electromagnetic fields. With this approach, we are also able to mimic structures employed by photosynthetic systems and study sub-nm details of the energy transfer process using molecules as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units. Such control over optical properties at the molecular level is possible using only this hyper-resolution optical approach, which does not suffer from ensemble averaging.

Pour demander le lien (avant le 29, 10h30) :
http://www.ismo.universite-paris-saclay.fr/spip.php?article2613