The Université Paris-Saclay website is currently being updated following the cyberattack it underwent in August. Certain information may not yet have been updated. We are working as quickly as we can to update all of the website’s content. Thank you for your understanding.
M2 Informatique pour la Science des Données - par alternance
60 ECTS doivent être validées. Les UEs sont organisées en trois blocs : un bloc disciplinaire (13 UEs pour 39 ECTS), un bloc Soft skills (2 UEs pour 6 ECTS), et un bloc Période Entreprise (une UE pour 15 ECTS).
L'objectif de ce cours et d'apprendre à créer et déployer des applications Cloud. Le cours couvre les aspects suivants : Définition et types de cloud (cloud privé, public, hybride), modèles de services du cloud (SaaS, PaaS, LaaS), risques et opportunités du cloud (gestion de la sécurité, accès instantanés à des ressources de calcul et de stockage (élasticité), création et déploiement d'applications (Google Cloud, Amazon, Azure, ….).
[ISD] Extraction et programmation statistique de l'information
Language(s) of instruction :
FR
ECTS :
3
Détail du volume horaire :
Directed study :25
Modalités d'organisation et de suivi :
Coordinator :
Objectifs pédagogiques visés :
Contenu :
De nombreuses applications sont confrontées avec une grande quantité d'informations numériques qui nécessitent un traitement statistique. Cet enseignement présente les principales techniques d'analyse et d'interprétation de données numériques telles que la séparation linéaire, la classification Bayesienne, le regroupement automatique et les réseaux connexionnistes. La deuxième partie de cet enseignement présente des algorithmes qui sont utilisés en traitement du langage parlé et en reconnaissance de geste ou d'écriture. Après une introduction à la technique de la programmation dynamique, l'utilisation et l'apprentissage des modèles de Markov cachés seront traités en détail.
L'Internet des objets représentent l'extension d'Internet à des dispositifs et à des lieux du monde physique. Il est considéré comme la troisième évolution de l'Internet, baptisée Web 3.0 qui fait suite à l'ère du web social. On parle d'objets connectés pour définir des types d'objets auxquels l'ajout d'une connexion Internet a permis d'apporter une valeur supplémentaire en termes de fonctionnalité, d'information, d'interaction avec l'environnement ou d'usage. Ce module présente le concept d'objets et de l'IoT, les fonctionnalités et technologies de communication, la mise en réseau et les architectures dédiées, les domaines d'application et nouveaux services, la standardisation et le lien entre l'IoT et le le Big Data.
L'objectif de ce cours est de donner les bases indispensables en apprentissage automatique ou "Machine Learning": les principales familles de modèles et les algorithmes associés (inférence et apprentissage). En particulier, seront traités : (i) les bases théoriques de l'apprentissage, les modèles probabilistes et l'apprentissage Bayésien, (ii) les modèles linéaires et les SVM (Support Vector Machines).
A partir de son expérience, des enseignements reçus, de la mission à mener à bien en entreprise, l'apprenti effectue un travail de recherche personnel aboutissant à un mémoire qui devra être rédigé et présenté devant un jury en fin de cursus.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Janvier - Février - Mars - Avril - Mai - Juin - Juillet.
Le cours porte sur les sujets suivants : Bornes, optimalité et relaxation; problèmes d'affectation et de couplages, programmation dynamique, Branch and Bound.
Les sujets suivants seront traités : Outils de base pour la cryptographie (fonctions one-way - fonctions de hachage, systèmes symétriques et à clés publiques, certificats, distribution et gestion des clés), protocoles cryptographiques élémentaires, identification et authentification revisitées, techniques d'épreuves, nombres aléatoires, estampilles, exemples de protocoles, mots de passe à usage unique, introduction aux protocoles à connaissance 0, attaques basées sur les requêtes statistiques.
Ce module est une introduction aux réseaux ad-hoc sans fil sous GNU/Linux et au développement sur systèmes embarqués. Il forme les étudiants à la programmation système et réseau dans un environnement TCP/IP pour l'embarqué. Les étudiants y apprennent la manipulation d'un système GNU/Linux pour configurer et utiliser un réseau WiFi en mode ad-hoc, la compilation croisée (cross-compilation) pour le développement d'applications sur systèmes embarqués, ainsi que la mise en pratique d'algorithmes de la théorie des graphes pour optimiser l'utilisation d'un réseau dont la topologie est connue.
[ISD] Représentation des connaissances et visualisation
Language(s) of instruction :
FR
ECTS :
3
Détail du volume horaire :
Directed study :25
Modalités d'organisation et de suivi :
Coordinator :
Objectifs pédagogiques visés :
Contenu :
L'enjeu de la représentation des connaissances est de permettre d'expliciter des connaissances humaines de toutes sortes dans un formalisme interprétable par une machine, i.e. lui permettant de raisonner sur ces connaissances pour remplir des tâches variées (recherche d'information, surveillance et diagnostic de systèmes complexes, …). Un formalisme de représentation doit être suffisamment expressif pour que l'homme puisse aisément modéliser et modifier toutes les connaissances utiles dans un domaine d'application donné, mais il doit aussi rendre possible la mise en œuvre par la machine de mécanismes de raisonnement vérifiant de " bonnes " propriétés (correction, complétude, coût raisonnable). Ce cours présentera différents formalismes de représentation de connaissances en mettant l'accent d'une part sur leur déclarativité (capacité à séparer les connaissances des algorithmes qui les utilisent, pour faciliter leur explicitation et leur modification par l'homme), leur expressivité (permettre de modéliser et de structurer des connaissances de différents types) et d'autre part, sur les algorithmes d'inférences permettant de mécaniser des raisonnements sur ces formalismes.
Dans ce cours, nous mettrons l'accent sur la mise en œuvre de techniques pour générer des ensembles de tests permettant de couvrir des objectifs de test. La notion d'objectif de test peut correspondre à plusieurs notions concrètes incluant des propriétés à tester, des contrats, des comportements sous forme de chemins à couvrir, des critères de couvertures portant sur les graphes de contrôles ou les flots de donnés. Nous découvrirons également la technique du model checking qui permet de vérifier automatiquement des propriétés de sûreté et de vivacité des systèmes.
Ce cours commence par une présentation des concepts de linguistique automatique nécessaires à la compréhension des applications développées pour le traitement de gros corpus de textes écrits, la documentation automatique, la recherche de documents, etc. Seront présentés ensuite les modèles utilisés dans une analyse plus fine des textes : analyseurs syntaxiques, sémantiques. Ces outils servent au développement d'applications telles que les correcteurs grammaticaux utilisés dans les traitements de texte ou les interfaces en français entre l'homme et la machine. Des exemples de ces applications seront montrés tout au long du cours. Les différents points développés dans les cours sont :
(i) Introduction au traitement automatique des langues : enjeux et applications, (ii) Analyse syntaxique de l'étiquetage morphosyntaxique à l'analyse en profondeur, en passant par les analyseurs robustes, (iii) Présentation et utilisation d'analyseurs syntaxiques-Analyse sémantique : de la syntaxe à une représentation fondée sur les réseaux sémantiques, (v) Applications : système de questions-réponses, systèmes de dialogue homme-machine.
Période(s) et lieu(x) d’enseignement :
Period(s) :
Mars - Avril - Mai - Juin.
Location :
ORSAY
Modalités de candidatures
Application period
From 15/05/2024 to 15/07/2024
Compulsory supporting documents
Motivation letter.
All transcripts of the years / semesters validated since the high school diploma at the date of application.
Curriculum Vitae.
Details of the UEs taken for candidates outside the M1 Paris Saclay.
Additional supporting documents
VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).
Supporting documents :
- Residence permit stating the country of residence of the first country
- Or receipt of request stating the country of first asylum
- Or document from the UNHCR granting refugee status
- Or receipt of refugee status request delivered in France
- Or residence permit stating the refugee status delivered in France
- Or document stating subsidiary protection in France or abroad
- Or document stating temporary protection in France or abroad.