M2 Traitement de l'information et exploitation données

  • Capacité d'accueil
    18
  • Langue(s) d'enseignement
    Français
  • Régime(s) d'inscription
    Formation initiale
Présentation
Objectifs pédagogiques de la formation
  • Rentrée 2024 - 2025 : lundi 16 septembre à 10h00 au CNAM Paris

 

L'actu : On parle de nous sur meilleurs-masters.com

Le master TRIED forme des « datascientists » qui sont des experts en analyse, traitement et modélisation des données. Ils maitrisent les concepts et les technologies de l’intelligence artificielle (IA). La formation est pluridisciplinaire à la frontière entre les mathématiques appliqués, l’informatique et la physique. L’objectif est d’acquérir les compétences nécessaires au développement d’algorithmes d’apprentissage automatique (machine learning) pour des modélisations statistiques complexes dans des domaines applicatifs variés. Depuis quelques années les étudiants sont formés à l’apprentissage profond (deep learning), ces techniques ayant des perspectives importantes dans de nombreux secteurs. Un focus particulier sur des données issues de capteurs et d'observations présentant un aléa naturel est mis en avant. Ces données sont celles qui sont utilisées notamment dans des domaines tels que la biométrie, la santé, l'observation de la terre ou la télédétection spatiale.
La formation permet également de poursuivre en thèse, notamment dans l'un des laboratoires partenaires.

La formation d'ingénieurs ou de futurs chercheurs en analyse et modélisation de données repose sur un équilibre entre formation théorique et pratique. Une connaissance approfondie des modèles est associée à l'apprentissage de leur mise en œuvre. L'ensemble des contenus pédagogiques et des contrôles de connaissances proposé met l'accent sur le travail en équipe, le travail sur projet, l'acquisition de compétences transverses, la capacité à mettre en œuvre des compétences de plusieurs disciplines.

Le master est également co-accrédité avec l'école d'ingénieur Telecom Sud Paris (TSP) de l'Institut Polytechnique de Paris (IPP). En moyenne, un tiers de la promotion est composé d'étudiants de TSP

Les cours se déroulent sur deux sites :

Lundi - mercredi : CNAM Paris : 292 Rue Saint-Martin, 75003 Paris (métro Arts et métiers)
Mardi - jeudi - vendredi : Telecom Sud PAris - Paris Saclay : 19 place Marguerite Perey, 91120 Palaiseau, Plateau de Saclay

Lieu(x) d'enseignement
PARIS 03
PALAISEAU
Pré-requis, profil d’entrée permettant d'intégrer la formation

Le master TRIED peut être suivi soit à la suite d’un Master 1 scientifique (Informatique, Physique, Mathématique Appliquées, Statistique, Sciences pour l’Ingénieur, génie électrique (E3A), M1 anglophone de TSP), soit à partir d'un diplôme d'ingénieur.

La formation  peut être également suivie par des étudiants en dernière année d’école d’ingénieur dans le cadre de convention pédagogique ou en bicursus (ISTY, TSP, ENSIIE, ESME, IPSA, ...).

Des connaissances en méthodes statistiques / probabilités / traitement du signal sont fortement recommandées. Une bonne connaissance d'un langage de programmation (Python de préférence) est également un plus important

Stages et projets encadrés
  • Un projet de 5 semaines au sein d'un des laboratoires partenaires est proposé. L'objectif est de mettre en oeuvre des méthodes d'apprentissage sur un projet proposé par une équipe de chercheurs du laboratoire. C'est aussi l'opportunité pour certain.e.s de réfléchir à une éventuelle poursuite en thèse.
  • Liste des stages de fin d'études (jusqu'à 2023)
Modalités pédagogiques particulières

La formation outre des enseignements traditionnels met également l'accent sur l'enseignement par projet individuel ou en groupe. Un aspect important de la formation est d'une part l'acquisition de connaissances pratiques quant à la  mise en oeuvre des méthodes de machine learning mais aussi d'acquérir un sens critique sur l'analyse des résultats fournis par ces méthodes. 

Informations complémentaires
  • Taille de la promotion : 24 à 28 étudiant.e.s
  • Tarif : 243€ de droit d'inscription en master + 95€ Contribution à la vie étudiante (CVEC)
  • Bourses internationales entrantes : voir ici
  • Stages à l'étranger : des aides sont accordées chaque année par l'université Paris Saclay afin de financer des stages dans un pays étranger (voir l'appel de l'année 2022-2023)

 

Compétences
  • être capable de comprendre les problématiques spécifiques (problématiques métiers) liées au traitement de données à partir de description faites par différents type d'interlocuteurs.

  • être capable d'identifier les modèles statistiques adaptés en fonction des problématiques en interaction avec différents type d'interlocuteurs.

  • être capable d'expérimenter (mettre en oeuvre) les modèles statistiques sur des jeux de données.

  • être capable d'analyser les résultats et d'évaluer les performances.

  • être capable de communiquer sur son travail avec différents type d'interlocuteurs.

  • être capable de se former seul à l'utilisation des futurs modèles et algorithmes de machine learning.

Profil de sortie des étudiants ayant suivi la formation

Le Master TRIED forme :

  • Des data scientists ou data ingénieurs experts en traitement statistique de données, analyse statistique de grande base de données, capables d'extraire de l'information à partir de jeux de données volumineux et hétérogènes.
  • Des experts en apprentissage statistique (machine learning) et IA tels que les réseaux de neurones profonds pour réaliser des modélisations statistiques complexes
  • Des ingénieurs ou des scientifiques capable de modéliser des données bruitées, extraire de l'information à partir de bases de données, ou concevoir des systèmes complexes basés sur des techniques de machine learning classique ou de deep-learning
  • Durant la formation, nous mettons un focus particulier sur des données issues de capteurs et d'observations présentant un aléa naturel. Ces données sont celles qui sont utilisées notamment dans les domaines de la biométrie, la santé, l'observation de la terre, le télédétection spatiale.
Débouchés de la formation

Les débouchés sont nombreux et dans des secteurs d’activité très variés tels que l’industrie automobile, les télécommunications, la santé et la biométrie, l'environnement et l'observation de la Terre et des planètes, les sciences du climat,  mais également l’analyse des réseaux sociaux, les banques ou les sociétés d’assurance ....

Les emplois sont également nombreux dans les laboratoires de recherche, les petites structures (startup) ou dans les grands groupes.

En raison de son ancienneté (25 ans) la formation bénéficie, d'un important réseau d'anciens étudiants. Ce réseau, associé au dynamisme du secteur, permet aux étudiants de bénéficier d'un nombre important d'offres de stage et d'emploi dans des domaines d'applications variés. Ces dernières années tous les étudiants du Master TRIED ont trouvé un emploi, soit directement après le stage soit dans les mois qui ont suivi. Voir les rubriques "Réussite et devenir des étudiants" à 6 mois et à 30 mois.

La conjoncture actuelle étant très favorable à la poursuite en doctorat les étudiants qui le souhaitent peuvent poursuivre en thèse. De nombreux stages de recherche sont proposés en laboratoire notamment dans le domaine de l'IA appliquée à observation de la terre et du climat ou bien dans les services R&D de grandes entreprises. La formation, par l'intermédiaire de ses enseignants est adossée à plusieurs laboratoires de recherche de différents domaines comme la fouille de données (data mining) ou l'apprentissage automatique (CEDRIC), les sciences de l'environnement et la télédétection spatiale (LATMOS, LOCEAN), les télécommunications et la biométrie (SAMOVAR).

Planning & Informations diverses

Le planning 2024-2025 est disponible ici

Collaboration(s)
Laboratoire(s) partenaire(s) de la formation

Cinq laboratoires / fédérations sont impliqués dans la formation :

  • Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS).
  • Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN)
  • Centre d’études et de recherche en informatique et communications (CEDRIC)
  • Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Télécom Sud PAris
  • Institut Pierre Simon Laplace (IPSL)
Programme

Le Tronc Commun est constitué du socle scientifique et de l'UE d'anglais. Le socle scientifique comprends les bases en analyse et modélisation statistique des données, apprentissage statistique, intelligence artificielle
Les ECTS au choix permettent soit d'acquérir des compétences complémentaires relatives aux base de données , aux objets connectés, au traitement d'image; soit de réaliser des projets de data sciences qui nécessitent la mise en oeuvre de l'ensemble des compétences acquises dans le tronc commun associées à des compétences transverses (gestion de projet, rédaction, valorisation).

Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
Analyse statistique de jeux de données réelles 6 60 12
Anglais 3 15 15 0
Apprentissage Profond 3 15 15 12
Méthodes statistiques pour les données qualitatives 3 9 9 12 12
Reconnaissances des formes et méthodes neuronales 6 36 18 6 36
Réseaux bayésiens-Chaînes de Markov Cachées 3 18 0 12
Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
Bases de données recherche d'information 3 24 12 18
Comparaison de méthodes de classification 3 12 0 18 18
Etude de cas en data science 3 12 9 9 14
Objets connectés : principes et fiabilité des capteurs 6 18 18 24
Traitement d'images 6 33 12 15

Avant le stage , 6 ECTS permettent d'aider les étudiants à préciser leur projet professionnel afin de choisir le stage adéquat.

Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
Base de Données pour Big Data 3 18 18
Connaissance de l'entreprise 3 12 0 18
Projet de recherche en data science 3 12 9 9 154
Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
Stage 24 64
Modalités de candidatures
Période(s) de candidatures pour la plateforme INCEPTION
Du 29/03/2024 au 15/07/2024
Pièces justificatives obligatoires pour la plateforme INCEPTION
  • Lettre de motivation.

  • Tous les relevés de notes des années/semestres validés depuis le BAC à la date de la candidature.

  • Attestation de français (obligatoire pour les non francophones).

  • Curriculum Vitae.

Pièces justificatives facultatives pour la plateforme INCEPTION
  • Dossier VAPP (obligatoire pour toutes les personnes demandant une validation des acquis pour accéder à la formation) https://www.universite-paris-saclay.fr/formation/formation-continue/validation-des-acquis-de-lexperience.

  • Fiche de choix de M2 (obligatoire pour les candidats inscrits en M1 à l'Université Paris-Saclay) à télécharger sur https://urlz.fr/i3Lo.

  • Document justificatif des candidats exilés ayant un statut de réfugié, protection subsidiaire ou protection temporaire en France ou à l’étranger (facultatif mais recommandé, un seul document à fournir) :
    - Carte de séjour mention réfugié du pays du premier asile
    - OU récépissé mention réfugié du pays du premier asile
    - OU document du Haut Commissariat des Nations unies pour les réfugiés reconnaissant le statut de réfugié
    - OU récépissé mention réfugié délivré en France
    - OU carte de séjour avec mention réfugié délivré en France
    - OU document faisant état du statut de bénéficiaire de la protection subsidiaire en France ou à l’étranger.

Contact(s)
Responsable(s) de la formation
Secrétariat pédagogique
Aurélie Stoquert - aurelie.stoquert@uvsq.fr

Secrétariats :