
UQSay seminar #17: Robust certification by optimal UQ
The expected performance of a system can generally differ from its operational performance due to the variability of some parameters. Optimal Uncertainty Quantification is a powerful mathematical tool that can be used to rigorously bound the probability of exceeding a given performance threshold for uncertain operational conditions or system characteristics. Metamodeling is at the heart of this research framework. In this perspective, Kernel Flow, a recent method to obtain a metamodel by kriging developed by Owhadi & Yoo, will be presented. The results obtained will be illustrated by examples in numerical and experimental aerodynamics.
Joint work with Eric Savin and Houman Owhadi.
chez soiThe expected performance of a system can generally differ from its operational performance due to the variability of some parameters. Optimal Uncertainty Quantification is a powerful mathematical tool that can be used to rigorously bound the probability of exceeding a given performance threshold for uncertain operational conditions or system characteristics. Metamodeling is at the heart of this research framework. In this perspective, Kernel Flow, a recent method to obtain a metamodel by kriging developed by Owhadi & Yoo, will be presented. The results obtained will be illustrated by examples in numerical and experimental aerodynamics.
Joint work with Eric Savin and Houman Owhadi.