M1 Parisian Research Master in Computer Science (MPRI)

  • Places available
    30
  • Language(s) of instruction
    English
    French
Présentation
Objectives

This programme prepares students for a doctorate in computer science theory, and more generally for a research career. There are two available tracks: the ENS Paris-Saclay track and the Faculty of Science track. Both lead to the same M2 MPRI and grant the same degree. 

The year’s objective at the ENS track is to perfect fundamental skills and discover their various applications in Computer Science theory. The Faculty of science track, on the other hand, focusses on building up strong foundations in theoretical Computer Science from the ground up. Both culminate in a long research internship.

The main fields covered are: algorithmics; computability and complexity; automata theory; combinatorial and effective algebra; logic, interactive and automatic demonstration; semantics of programming languages; analysis and verification of systems and programmes; cryptology and security (at the ENS track); quantum computing and quantum information (at the Faculty of Science track). Depending upon option choices, the two tracks have 1-3 courses in common.

The programme is taught by researchers in the field and stands at the cutting age of current scientific knowledge. It prepares students optimally for a PhD.

All courses are taught in English, except for three courses at the Faculty of Science track (these can be easily be replaced by English-taught courses from other tracks of the Master in Computer Science). 

A limited number of scholarships towards your living costs are available [1,2], with deadlines in May.

Location
GIF SUR YVETTE
Course Prerequisites

No English-language level certificate is asked for. If your application is selected, you will have an interview during which your ability to do Science in English will be assessed. We usually look for strong grades in theoretical/mathematical aspects of Computer Science (algorithmics, computability, automata, logics, functional programming, discrete mathematics, graphs etc.)

Skills
  • Develop a research activity in fundamental computer science.

  • Design a language, an algorithm, etc.

  • Demonstrate properties of a language, of an algorithm, etc.

  • Formalise a problem using the relevant tools and level of abstraction.

  • Exhibit work to a scientific audience.

Post-graduate profile

After completing this programme, students tend to go on to the MPRI M2 based in Paris. Others may stay in Saclay and opt for more specialised M2 such as QDCS.

Career prospects

Academic research, teaching at tertiary level, R&D.

Collaboration(s)
Laboratories

Laboratoire Méthodes Formelles

Laboratoire Interdisciplinaire des Sciences du Numérique

Programme
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
[M2 QDCS] Algorithms in the nature 2.5
[MPRI] Advanced Algorithms 2.5 21
[MPRI] Graph Algorithms 2.5 21
[QDCS] Parallel algorithms 2.5 12 6 3
[MPRI] Probabilistic Algorithms and Games 2.5 21
[MPRI] Automata and Applications 2.5 21
[MPRI] Combinatorics and Algebraic Computation 2.5 21
[MPRI] Complexity, decidability, models of computation 2.5 21
[MPRI] Foundations of Quantum Information 2.5 21
[M1 QDCS] Introduction to quantum algorithms and programming 2.5
[MPRI] Introduction to deductive proof of programs 2.5 21
[MPRI] Introduction to Proof Assistants 2.5 21
[MPRI] Lambda-calculus 2.5 21
Langages de programmation et compilation 2.5 21
Elective course 1 2.5
Elective course 2 2.5
Elective course 3 2.5
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Foundations of Computer Science 15
General Computer Science 6
Initiation to Research 3
Elective course 6
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Foundations of Computer Science 21
General Computer Science 6
Initiation to Research 3
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
[AI] OPT 10: IMAGE INDEXING AND UNDERSTANDING 2.5 15 6
[AI] OPT 11: DEEP LEARNING FOR NLP 2.5 18 3
[AI] OPT 12: INFORMATION EXTRACTION FROM DOCUMENTS TO INTERFACES 2.5 10.5 10.5
[AI] OPT 13: Theorie de l'information 2.5 10.5 10.5 0 0
[AI] OPT1 : GRAPHICAL MODELS 2.5 15 6
[AI] OPT14:MULTILINGUAL NATURAL LANGUAGE PROCESSING 2.5 21
[AI] OPT2: IMAGE PROCESSING 2.5 21
[AI] OPT3 : REINFORCEMENT LEARNING 2.5 15 6
[AI] OPT4: DEEP LEARNING 2.5 10.5 10.5
[AI] OPT5 : VOICE RECOGNITION AND AUTOMATIC LANGUAGE PROCESSING 2.5 21
[AI] OPT6: LEARNING THEORY AND ADVANCED MACHINE LEARNING 2.5 21
[AI] OPT7: ADVANCED OPTIMIZATION 2.5 12 4.5 4.5
[AI] OPT8: GAME THEORY 2.5 12 4.5 4.5
[AI] OPT9: DATA CAMP 2.5 10 15
[AI] PRE1: APPLIED STATISTICS 2.5 10.5 10.5
[AI] PRE2: MATHEMATICS FOR DATA SCIENCE 2.5 12 4.5 4.5
[AI] PRE3: DATACOMP 1 2.5 12 9
[AI] PRE4: SCIENTIFIC PROGRAMMING 2.5 9 12
[AI] TC0 : Introduction to Machine Learning 2.5 15 6
[AI] TC1: MACHINE LEARNING 2.5 15 6
[AI] TC2: OPTIMIZATION 2.5 12 4.5 4.5
[AI] TC3: INFORMATION RETRIEVAL 2.5 9 12
[AI] TC4: Probabilistic Generative Models 2.5 16.5 4.5
[AI] TC5: SIGNAL PROCESSING 2.5 24
[AI] TC6: DATACOMP 2 2.5 12 9
[ANO] Blockchain 2.5
[ANO] Evaluation de performances 2.5
[ANO] Internet of Things 2.5 21
[ANO] Optimisation dans les graphes 2.5 21
[ANO] Optimisation discrète non linéaire 2.5 21
[ANO] Optimisation multi-objectifs 2.5 21
[ANO] MPI programming 2.5
[ANO] Programmation système et réseaux 2.5 21
[ANO] Réseaux mobiles 2.5 21
[ANO] Réseaux sans fil 2.5 21
[ANO] Tests fonctionnels de protocoles 2.5 21
[ANO] Théorie des jeux 2.5 21
[ANO] Virtualisation et cloud 2.5
[DS] Algorithms for Data Science 2.5 12 9
[DS] Bases de données avancées I : Optimisation 2.5 9 8 4
[DS] Bases de données avancées II : Transactions 2.5 9 8 4
[DS] Data Science Project 2.5 3 18
[DS] Distributed Systems for Massive Data Management 2.5 12 0 9
[DS] Intelligence Artificielle, Logique et Contraintes 2.5 10.5 10.5
[DS] Intelligence Artificielle, Logique et Contraintes : Projet 2.5 10.5 10.5
[DS] Knowledge Discovery in Graph Data 2.5 12 6 3
[DS] Semantic Web and Ontologies 2.5 12 9
[DS] Social and Graph Data Management 2.5 12 9
[HCI] Advanced Design of Interactive Systems 2.5
[HCI] Advanced Immersive Interactions 2.5 21
[HCI] Advanced Immersive Interactions - Project 2.5
[HCI] Advanced Programming of Interactive Systems 1 2.5
[HCI] Advanced Programming of Interactive Systems 2 2.5
[HCI] Career Seminar - Level 1 2.5
[HCI] Career Seminar - Level 1 : Project 2.5 21
[HCI] Career Seminar - Level 2 2.5
[HCI] Career Seminar - Level 2 project 2.5
[HCI] Creative Design 2.5
[HCI] Creative Design : Project 2.5
[HCI] Design of Interactive Systems 2.5
[HCI] Design project - Level 1 2.5 21
[HCI] Design project - Level 1 : Project 2.5 21
[HCI] Design project - Level 2 2.5 21
[HCI] Design project - Level 2 : Project 2.5 21
[HCI] Digital Fabrication 2.5
[HCI] Digital fabrication : Project 2.5
[HCI] Evaluation of Interactive Systems 2.5
[HCI] Experimental Design and Analysis 2.5
[HCI] Fundamental of Human-Computer Interaction 1 2.5
[HCI] Fundamental of Human-Computer Interaction 2 2.5
[HCI] Fundamental of situated computing 2.5
[HCI] Fundamentals of eXtended Reality 2.5
[HCI] Gestural and Mobile Interaction 2.5
[HCI] Groupware and Collaborative Work 2.5 21
[HCI] Groupware and Collaborative Work : Project 2.5 21
[HCI] Interactive Information Visualization 2.5
[HCI] Interactive Information Visualization : Project 2.5
[HCI] Interactive Machine Learning 2.5
[HCI] Interactive Machine Learning : Project 2.5
[HCI] Mixed Reality and Tangible Interaction 2.5 21
[HCI] Mixed Reality and Tangible Interaction - Project 2.5 21
[HCI] Programming of Interactive Systems 1 2.5
[HCI] Programming of Interactive Systems 2 2.5
[HCI] Serious games 2.5
[HCI] Serious games : project 2.5
[HCI] Studio Art Science 2.5 21
[HCI] Virtual Humans 2.5 21
[HCI] Virtual Humans : Project 2.5 21
[ISD] Algorithmique avancée 3 25
[ISD] Algorithmique distribuée 3 25
[ISD] Anglais 3 25
[ISD] Anglais 3 25
[ISD] Blockchain 3 25
[ISD] Cloud Computing 3 25
[ISD] Communication 3 25
[ISD] Data Lake 3 25
[ISD] Data Warehouse I 3 25
[ISD] Data Warehouse II 3 25
[ISD] Droit informatique 3 25
[ISD] Extraction et programmation statistique de l'information 3 25
[ISD] Introduction à l'apprentissage 3 25
[ISD] IoT (Internet des objets) 3 25
[ISD] langages Dynamiques 3 25
[ISD] Machine learning/Deep learning 3 25
[ISD] Mémoire 12 8
[ISD] Modèles Mathématiques 3 25
[ISD] Modélisation 3 25
[ISD] Optimisation 3 25
[ISD] outils pour la manipulation et l'extraction de données 3 25
[ISD] Politiques et concepts avancés en sécurité 3 25
[ISD] Probabilités/Statistiques 3 25
[ISD] Programmation système et réseau 3 25
[ISD] Projet étude de cas 3 25
[ISD] Projets tuteurés 6 25
[ISD] Rapport d'activité 6 5
[ISD] Représentation des connaissances et visualisation 3 25
[ISD] Réseaux 3 25
[ISD] Réseaux sans fil 3 25
[ISD] sécurité 3 25
[ISD] Services et applications Web 3 25
[ISD] Test et Vérification 3 25
[ISD] Traitement automatique des langues 3 25
[ISD] Traitement distribué des données. 3 25
[QDCS] Algorithms in the nature 2.5 21
[QDCS] Robust distributed algorithms 2.5 21
[QDCS] Parallel algorithms 2.5 12 6 3
[QDCS] Auto-stabilisation 2.5 21
[QDCS] Big Data 2.5 12 3 8
[M1 QDCS] High performance computing 2.5 12 9
[QDCS] [M2 QDCS] Recent trends in parallel, distributed, and quantum computing 2.5 21
[QDCS] Initiation to quantum algorithms and programming 2.5 21
[M1 QDCS] Game, learning, and optimisation of 2.5 21
complex systems 2.5 21
[QDCS] Stochastic optimisation 2.5 21
[QDCS] Ordonnancement et systèmes d'exécution 2.5 21
[QDCS] Advanced C++ programming 2.5 9 0 12
[QDCS] GPU programming 2.5 12 9
[QDCS] Programmation orientée objet 2.5 11 10
[SOFT] Soft skills - 1A (Langue) 2.5 21
[SOFT] Soft skills - 1B (Langue) 2.5 100
[SOFT] Soft skills - 2 (Communication) 2.5 21
[SOFT] Soft skills - 3 (Formation à la vie de l'entreprise - Initiation) 2.5 21
[SOFT] Soft skills - 4 Innovation et Entreprenariat 2.5 21
[SOFT] Soft skills - 5 Innovation et Entreprenariat avancé 2.5 21
[SOFT] Soft skills - Seminars (Fairness in Data Science) 2.5 20
[SOFT] Soft skills - Seminars B 2.5
[SOFT] Soft skills - Summer school 2.5 21
[SOFT] Soft skills - Transversal Project A 2.5 7 7 7
[SOFT] Soft skills - Transversal Project B 2.5 7 7 7
EIT - Business Development Lab 1 4
EIT - Business Development Lab 2 5
EIT - Innovation & Entrepreneurship Advanced 1 2.5 21
EIT - Innovation & Entrepreneurship Advanced 2 2.5
EIT - Innovation & Entrepreneurship Study 1 3 21
EIT - Innovation & Entrepreneurship Study 2 3
EIT - Innovation and Entrepreneurship Basics 1 3
EIT - Innovation and Entrepreneurship Basics 2 3
EIT - Summer School 4
French Language and Culture 1 2 30
French Language and Culture 2 2 21
Long internship 30
TER Stage 10
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Short internship 15
Test fonctionnels [ANO] 2.5
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Long internship 30
Subjects ECTS Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Elective course 15
Short internship 15
Modalités de candidatures
Application period
From 15/02/2024 to 15/05/2024
Compulsory supporting documents
  • Motivation letter.

  • All transcripts of the years / semesters validated since the high school diploma at the date of application.

  • Curriculum Vitae.

Additional supporting documents
  • VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).

    (only needed in case you have officially validated your prior professional experience to count as equivalent to a university degree)
Contact(s)
Course manager(s)