Sensitivity of magnetic sensing: The influence of the environment

Influence of an external magnetic field

Fréquence rf (GHz)

 $g_{\rm NV} = 2.0030$ (for a single electron g = 2.0023) \longrightarrow Zeeman shift $\approx 28 \,\rm MHz/mT$

NV center \equiv magnetometer of atomic size with sensitivity to DC magnetic field $\approx \mu T$

Maze et al, Nature **455**, 644 (2008) Balasubramanian et al, Nature **455**, 648 (2008)

Atomic magnetometry: sensitivity

- The atomic dipoles precess at the Larmor frequency associated to the magnetic field: $\Omega_L = \gamma B$
- Coupling with light induces changes in polarization and intensity
- Sensitivity is limited by spin projection noise:

$$\delta B_{\rm SNL} \approx \frac{1}{\sqrt{N}} \times \frac{1}{\sqrt{\Gamma_{\rm spin}\tau}} \times \frac{\Gamma_{\rm spin}}{\gamma} \to \delta B_{\rm SNL} \approx \frac{1}{\gamma} \sqrt{\frac{\Gamma_{\rm spin}}{N\tau}}$$
$$N = n_{\rm at} \times V$$
$$\Gamma_{\rm spin} = n_{\rm at} \times \xi \quad \Big\} \to \delta B \approx \frac{1}{\gamma} \sqrt{\frac{\xi}{V\tau}}$$

"Optical Magnetometry", Budker & Jackson Kimball eds (Cambridge Univ. Press)

Magnetometry : atoms vs NV

$$\delta B \approx \frac{1}{\gamma} \sqrt{\frac{\xi}{V\tau}}$$

Very high sensitivity can be achieved by optimizing the relaxation rate or by increasing the volume

sensitivity $\simeq 10~\text{pT}/\sqrt{\text{Hz}}$ record values $\simeq 0.01~\text{fT}/\sqrt{\text{Hz}}$

photon shotnoise limit

$$\delta B \approx \frac{1}{\gamma_{\rm NV}} \times \frac{1}{C} \times \frac{1}{\sqrt{R} \times \sqrt{T_2^{\star}}}$$

 $\gamma_{\rm NV} = (2\pi) \times 28 \,{\rm MHz/mT}$

- C: ODMR contrast
- T_2^{\star} : spin coherence time
- R : photon detection rate

 $R \propto N_{\rm NV}$ number of NV centers $R \propto \epsilon$ photon collection efficiency

All parameters need to be optimized. It can provide both sensitivity and spatial resolution or field of view

Experimental results

ODMR contrast and linewidth

Magnetic field sensitivity (DC)

A. Dreau, M. Lesik, et al., Phys. Rev. B 84, 195204 (2011)

Sensitivity [T/√Hz]

10⁻⁵

S 0.2 0.12

△ 0.04

6 8

 10^{\prime}