
Introduction to quantum computing

Anthony Leverrier
&

Mazyar Mirrahimi



QUANTUM INFORMATION PROCESSING

What is next?

• Interesting quantum devices in the next 10 years: 
= complexity that CANNOT EVER be classically simulated

(> 50 qubits or equivalent)

• Outstanding questions:  
what level of quantum error correction(QEC)  needed?
how much overhead QEC?
what’s the best architecture?
what are the useful and achievable (on short term) applications?



ROAD-MAP TOWARDS FAULT-TOLERANT QUANTUM COMPUTATION

M.H. Devoret & R.J. Schoelkopf, Science 339, 1169-1174 (2013).



OUTLINE

�Classical vs quantum error correction
�Theory of quantum error correction
�Stabilizer formalism
�Fault-tolerant QEC
�Fault-tolerant logical gates
�Concatenation and threshold theorem
�A brief introduction to surface codes
�A brief introduction to continuous variable codes



MATERIAL

• « Quantum computation and quantum information »
M.A. Nielsen & I.L. Chuang

• Lecture notes by John Preskill (Caltech)
http://www.theory.caltech.edu/people/preskill/ph229/

• Surface codes: Toward practical large-scale quantum computation
A.G. Fowler et al., PRA 86,032324 (2012)

• Quantum error correction for quantum memories

B.M. Terhal, Rev. Mod. Phys. 87, 307 (2015).

• PhD Thesis, Joachim Cohen, ENS Paris (Feb 2017).
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QUANTUM ERROR CORRECTION

• Decoherence: not a fondamental objection to quantum computation;

• Model continuous decoherence as discrete error channels;

• Redundantly encode quantum information in an entangled state of a 
multi-qubit system and perform quantum error correction. 



CLASSICAL NOISE, CLASSICAL ERROR CORRECTION

Classical noise: bit-flip errors
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QUANTUM VS CLASSICAL ERROR CORRECTION

Objective: Protect any superposition state c0|0 > + c1|1 > without
any knowledge of c0 and c1.

Quantum error correction: bit-flip errors

0 1c0 +c1 c0 +c10 10 10 1

• Majority vote erases the information.
• 1-bit errors tractable by parity measurement:   Z1Z2 and  Z2Z3

• Four outcomes: (++) No errors, (-+) error on Q1, (+-) error on 
Q3, (--)  error on Q2.



What are the Failure Modes? Failures �

Measure Syndrome
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Courtesy of R. Schoelkopf

THE BIT-FLIP CODE IN PRACTICE



QEC BEYOND BIT-FLIP ERRORS

One needs to correct four possible error channels: 
I,X,Z,Y=iXZ

c0 0 1+c1
or c0 1 0+c1 c0 0 1- c1

or c0 1 0- c1or

c0 0 1+c1
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A general error mechanism: 

with
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Quantum noise: interaction with environment

QEC BEYOND BIT-FLIP ERRORS

The choice of the Kraus operators is not unique:

Remark

satisfies



T1 Relaxation

EXAMPLES

Pure dephasing



Theory of QEC

QEC BEYOND BIT-FLIP ERRORS

Similarly to an error channel, the error correction (measuement
and feedback) can be modeled by a quantum operation:

This corrects an error channel if for any in the 
code space
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Theorem:

QUANTUM ERROR CORRECTION CRITERIA

• Let      be a quantum code, with a basis              for the code 
subspace. 

• Suppose       is an error channel with elements .

• A necessary and sufficient condition for the existence of error
recovery operations is

where is hermitian.  
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Interpretation

Orthogonal codewords remain orthogonal after the errors

	
E
i
φ
k

⊥ E
j
φ
l



Theorem: discretization of error channels

QEC BEYOND BIT-FLIP ERRORS

If the operation corrects the error channel , it corrects any
other error channel whose elements are linear
combinations of elements with complex coefficients:
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Corollary: case of qubits

It sufficies to correct the operations to 
correct for any single-qubit errors. 		
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c0

FULL QUANTUM ERROR CORRECTION

Four possible error channels for each qubit: I, X, Z, Y=iXZ

0 1+c1

At least five qubits to make all these errors tractable

or c0 1 0+c1 c0 0 1- c1
or c0 1 0- c1or

c0 0 1+c1

7-qubit Steane code: 
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FULL QUANTUM ERROR CORRECTION

Single round of error correction
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STABILIZER QUANTUM ERROR CORRECTING CODES

Idea: quantum states could be represented by operators that stabilize
them, e.g. the EPR state                                is the unique state such that

	
ψ = 00 + 11( )/ 2
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Pauli Group:

Properties: 

Stabilizer group: subgroup of        , all elements commute with each
other and does not contain .

Stabilizer generators:  Minimal set of operators that generate :

Stabilizer subspace: subspace of dimension 2n-r
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ERROR-CORRECTION CONDITIONS FOR STABILIZER CODES

Theorem:

Let      be the stabilizer for a quantum code. Suppose            is a set of 
operators in        .  A sufficient condition for the correctability of these
errors is that one of the following holds

• ,

• There is an               that anti-commutes with .  

Proof:

Case 1:

Case 2:

and therfore
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STABILIZER CODES: EXAMPLES

Bit-flip code:
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Taking for error operators

Steane code:

Stabilizer group:

Error operators:



STABILIZER CODES: LOGICAL OPERATIONS

Definition

Operators in        that commute with : they act on the        -dimensional

stabilizer subspace.

Steane code:

Stabilizer group:

Logical operators:
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FAULT-TOLERANCE

Central idea: through operations, one should not introduce new 
error channels not taken into account by QEC. In particular, one 
should avoid propagation/amplification of errors

Example of parity measurements: simplest circuit to measure the parity
Z1Z3Z5Z7 for the Steane code. 

	
0 Z



NOT FAULT-TOLERANT

A phase-flip of the ancilla qubit propagates to memory qubits.

Example of parity measurements: simplest circuit to measure the parity
Z1Z3Z5Z7 for the Steane code. 

	
0 ZZ



NOT FAULT-TOLERANT

A phase-flip of the ancilla qubit propagates to memory qubits.

Example of parity measurements: simplest circuit to measure the parity
Z1Z3Z5Z7 for the Steane code. 

	
0 ZZ
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NOT FAULT-TOLERANT

A phase-flip of the ancilla qubit propagates to memory qubits.

Example of parity measurements: simplest circuit to measure the parity
Z1Z3Z5Z7 for the Steane code. 
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Z



TOWARDS A SOLUTION

Idea N1: transversal operations

J. Preskill, Fault-tolerant quantum computation, 1997.

• Each ancilla qubit couples to no more than one memory qubit.
• We readout more than the required information (ancillas get

entangled to the codeword).



TOWARDS A SOLUTION

Idea N2: encoding ancillas

J. Preskill, Fault-tolerant quantum computation, 1997.

Data

Ancilla{
 		

Shor = 1
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• The parity of the data qubits is mapped on the parity of the Shor state.
• An error in preparation of the Shor state can propagate.



TOWARDS A SOLUTION

Idea N3: verification of ancillas

J. Preskill, Fault-tolerant quantum computation, 1997.

• Parity measurement is launched if the 5th qubit is measured in 0.
• Otherwise repeat the preparation.
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A UNIVERSAL SET OF LOGICAL GATES

Single qubit gates
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Two qubit gate

		

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















= 0 0 ⊗ I + 1 1 ⊗ XC-NOT



BACK TO STABILIZER CODES: EXAMPLE OF STEANE

Logical operatiors and action of gates:

Logical operators:

Logical Hadamard:

Logical Phase:        
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		 HZH = X ,       HXH = Z ,       HYH = −Y

		 SZS = Z ,       SXS =Y ,       HYH = −X
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BACK TO STABILIZER CODES: EXAMPLE OF STEANE

Fault-tolerant C-NOT:



BACK TO STABILIZER CODES: EXAMPLE OF STEANE

Fault-tolerant T-gate:

ψ
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CONCATENATION OF CODES 

Concatenation of codes C1 (size n1) and C2 (size n2)

We construct a code of size n1n2, where each qubit of C2 is 
replaced by a block of n1 qubits encoded in C1.

Higher order QEC by concatenation

Level of concatenation Error probability

Physical qubits 		
ε
0

= p

1st encoded level
		
ε
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= cp2 = c−1(cp)2 (*)

(*) For the Steane code   		c ≈104

2nd encoded level
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THRESHOLD THEOREM

A quantum circuit containing f(n) gates may be simulated with 
probability of error at most      using 

gates on hardware whose components fail with probability at 
most p, provided that p<pth , and given reasonable assumptions 

on the noise.

ε



TOWARDS AN ERROR-CORRECTED QUBIT

Three main strategies for implementing a logical qubit:

- A register of physical qubits with full gate operations

- A fabric of physical qubits with nearest neighbor gates

- A superconducting resonator with non-linear drives, non-linear 
dissipation and photon parity monitoring. These services are 
provided by Josephson junctions.

Shor (1995)
Steane (1996)
Gottesman, Kitaev, Preskill (2001)
Kitaev (2006)
M.M. et al. (2014)
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SURFACE CODE: ENCODING

Stabilizers:

	 	

A
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∏

Stabilizer (protected) subspace:

Number of qubits: 

		n= L2 +(L−1)2

Number of independent stabilizers: 

		r =2L(L−1)

Encoded space:

Logical operators: 
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SURFACE CODE: PROTECTION

Fowler et al. (2012)

Black discs: measurement qubits
White discs: data qubits



INCREASING THE NUMBER OF LOGICAL QUBITS

Fowler et al. (2012)

Turning off some stabilizer
measurements:

Number of qubits: 
		n= L2 +(L−1)2

Number of independent stabilizers: 

		r =2L(L−1)−1

Encoded space:

How about code distance: 4 at max. 

Solution?



INCREASING THE NUMBER OF LOGICAL QUBITS

Fowler et al. (2012)

Turning off some stabilizer
measurements:

Number of qubits: 
		n= L2 +(L−1)2

Number of independent stabilizers: 

		r =2L(L−1)−1

Encoded space:

How about code distance: 4 at max. 

Solution: larger deffect



QUANTUM COMPUTATION WITH SURFACE CODES

Fowler et al. (2012)

1. Initialization: projectively measure logical operators

2. Moving qubits around (modifying stabilizer constraints)

3. CNOT gates between qubits (braiding operations)

4. Hadamard gate (modifying stabilizer constraints and 
physical Hadamard on a set of qubits)

5. S and T gates (magic state distillation and teleportation)



SURFACE CODE: ESTIMATED PERFORMACES

Fowler et al. (2012)

Error model:

1- attemting to perform a data qubit 
identitiy, but instead performing single-
qubit X, Y, Z, each with proba p/3.

2- attemting to initilize |g> but instead
preparing |e> with proba p.

3- attempting to perform H, but in 
addition one single-qubit operation X, Y, 
Z with proba p/3.

4- measurement error with proba p.

5- attempting to perform measure qubit-
data qubit CNOT, but instead one of the 
two qubit operations X1,2, Y1,2, Z1,2, X1X2, 
X1Y2, X1Z2, Y1X2, Y1Y2, Y1Z2, Z1X2, Z1Y2, Z1Z2

with proba p/15. 
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= 4d(d −1)+1
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QUANTUM HARMONIC OSCILLATOR AND COHERENT STATES 

x 

2
ψ

zpf / 2x mψ= ℏ

max zpfx xψ=

Using classical control (e.g. laser, force), one can only make coherent displacements

Glauber (coherent) state
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SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR 

Cat state of an oscillator
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SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR 

Cat state of an oscillator
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PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

Dissipation to 
Transmission line

LC oscillator

   

d
dt

ρ = κ D[a]ρ,

D[a]ρ = aρa† − 1

2
a†aρ − 1

2
ρa†a.



PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

Dissipation to 
Transmission line

LC oscillator

   

d
dt

ρ = κ D[a]ρ,

D[a]ρ = aρa† − 1

2
a†aρ − 1

2
ρa†a.

Formulation with error channels:

I.L. Chuang et al., PRA 56, 1997.



Steady state 
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H= iε

1
(a−a†), L = κ

1
a

driven damped harmonic oscillator :

55

CAT PUMPING



New type of drive : 
2-photon exchange with the environment :

Asymptotic 2D-manifold

56

			
H= iε

2
(a2 −a†2), L = κ

2
a
2

Leghtas et al. Science (2015)

CAT PUMPING



CHOICE OF QUBIT BASIS

  

+Z = Cα
 + = N+ ( α + −α ) = c

2n∑ 2n

−Z = Cα
 − = N− ( α − −α ) = c

2n+1∑ 2n+1



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

Phase-flip errors induced by reasonable (local in the phase 
space) errors are suppressed exponentially in          . |α |2

 
Tr(σ X

Lρ∞ ) for ρ0= β β



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

An arbitrary error channel on a harmonic oscillator:

A general identity:  

Where: 



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

Correctability criteria for the cat-code:

An appropriate basis for the error operators:

Gottesman, Kitaev, Preskill, PRA, 2001. 

It is enough to illustrate the correctability of  the symmetric
displacement operators.



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

Under the condition of small displacements: 

Where: 

Furthermore pumping is the correction operation:

  |β |≤ Rmax

  ε ≤ 4e−2(|α |− Rmax)2



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

Example 1: photon-loss channel

   
Ek = (1− e−κδ t )k

k!
e

−κδ t
2

a†a
ak

Therefore

Leading to 



PUMPED CATS: A QUBIT WITHOUT PHASE-FLIPS

Example 2: phase-noise due to dispersive coupling to a hot mode

Set of error operators:

   Fk = pneiχnδ ta†a

Leading to 



TOWARDS FULL PROTECTION:

Two approaches:

• Multi-component cats: 4-photon pumping for protection 
against photon annihilation operator….. 

• Multi-mode cats: Protection against logical bit-flips. This 
is more general as it includes any remaining error
channel: photon loss, thermal excitations, higher-order
non-linearities…. 



New type of drive : 
4-photon exchange with the environment :

Asymptotic 4D-manifold

M.M. et al. NJP (2014), 65
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HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

Idea:

0L = Cα
+ = 1

2
( α + −α ) 1L = Ciα

+ = 1

2
( iα + −iα )



HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

Another possibility:

0L = Cα
− = 1

2
( α − −α ) 1L = Ciα

− = 1

2
( iα − −iα )
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â

â

â

â

3
g e iic cα αψ − −−= C C

   
ψ 0 = cg Cα

+ + ce C iα
+1

g e iic cα αψ − −+= C C
   
ψ 2 = cg Cα

+ − ce C iα
+

*Ofek et al., Nature 536, 441-445, 2016.

TO LIVE AND DIE IN A CAVITY



QUANTUM COMPUTATION WITH CAT CODES

M.M. et al., NJP, 2014
J. Cohen et al., PRL, 2017
S. Rosenblum et al., In press.

1. Half-protected logical gates through Zeno dynamics

2. Fault-tolerant photon number parity measurements

3. Higher-order codes and fully protected logical gates
(ungoing)


