

Introduction to quantum computing

Anthony Leverrier & Mazyar Mirrahimi

QUANTUM INFORMATION PROCESSING

What is next?

- Interesting quantum devices in the next 10 years:
 - = complexity that CANNOT EVER be classically simulated
 - (> 50 qubits or equivalent)

• Outstanding questions:

- what level of quantum error correction(QEC) needed?
- how much overhead QEC?
- what's the best architecture?
- what are the useful and achievable (on short term) applications?

ROAD-MAP TOWARDS FAULT-TOLERANT QUANTUM COMPUTATION

M.H. Devoret & R.J. Schoelkopf, Science 339, 1169-1174 (2013).

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

MATERIAL

- « Quantum computation and quantum information » M.A. Nielsen & I.L. Chuang
- Lecture notes by John Preskill (Caltech) http://www.theory.caltech.edu/people/preskill/ph229/
- Surface codes: Toward practical large-scale quantum computation A.G. Fowler et al., PRA 86,032324 (2012)
- Quantum error correction for quantum memories B.M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
- PhD Thesis, Joachim Cohen, ENS Paris (Feb 2017).

OUTLINE

Classical vs quantum error correction
 Theory of quantum error correction
 Stabilizer formalism
 Fault-tolerant QEC
 Fault-tolerant logical gates
 Concatenation and threshold theorem
 A brief introduction to surface codes
 A brief introduction to continuous variable codes

QUANTUM ERROR CORRECTION

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

- Decoherence: not a fondamental objection to quantum computation;
- Model continuous decoherence as discrete error channels;
- Redundantly encode quantum information in an entangled state of a multi-qubit system and perform quantum error correction.

CLASSICAL NOISE, CLASSICAL ERROR CORRECTION

Basics of **classical** error correction: redundancy

1-bit errors tractable by majority vote:

Probability of incorrectible 2-bit errors: < 3p² (p error probability per unit time)

QUANTUM VS CLASSICAL ERROR CORRECTION

Objective: Protect any superposition state $c_0 | 0 > + c_1 | 1 >$ without any knowledge of c_0 and c_1 .

Quantum error correction: bit-flip errors

- Majority vote erases the information.
- 1-bit errors tractable by **parity measurement**: Z_1Z_2 and Z_2Z_3
- Four outcomes: (++) No errors, (-+) error on Q1, (+-) error on Q3, (--) error on Q2.

THE BIT-FLIP CODE IN PRACTICE

Courtesy of R. Schoelkopf

QEC BEYOND BIT-FLIP ERRORS

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

One needs to correct four possible error channels: I,X,Z,Y=iXZ

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

QEC BEYOND BIT-FLIP ERRORS

Quantum noise: interaction with environment

A general error mechanism:

$$\mathcal{E}(\rho_s) = tr_{env} \left[U_{\tau} (\rho_s \otimes \rho_{env}) U_{\tau}^{\dagger} \right] = \sum_k E_k \rho_s E_k^{\dagger}$$

with
$$\sum_k E_k^{\dagger} E_k = I.$$

Remark

The choice of the Kraus operators is not unique:

$$\tilde{\boldsymbol{E}}_{\mu} = \sum_{v} \boldsymbol{u}_{\mu,v} \boldsymbol{E}_{v}, \qquad \left(\boldsymbol{u}_{\mu,v}\right) \text{ unitary}$$

satisfies
$$\sum_{\mu} \boldsymbol{E}_{\mu} \rho \boldsymbol{E}_{\mu}^{\dagger} = \sum_{\mu} \tilde{\boldsymbol{E}}_{\mu} \rho \tilde{\boldsymbol{E}}_{\mu}^{\dagger} \qquad \forall \rho$$

EXAMPLES

Pure dephasing

$$\mathcal{E}_{\varphi}(\rho) = E_{0}\rho E_{0}^{\dagger} + E_{1}\rho E_{1}^{\dagger},$$
$$E_{0} = \sqrt{1-pI}, \quad E_{1} = \sqrt{p\sigma_{z}}, \quad p = \tau / T_{\varphi}$$

T1 Relaxation

$$\mathcal{E}_{T1}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger},$$

$$E_0 = |0\rangle \langle 0| + \sqrt{1-p} |1\rangle \langle 1|, \quad E_1 = \sqrt{p} |0\rangle \langle 1|, \quad p = \tau / T1$$

QEC BEYOND BIT-FLIP ERRORS

Theory of QEC

Similarly to an error channel, the error correction (measuement and feedback) can be modeled by a quantum operation:

$$\rho \to \mathcal{R}(\rho) = \sum_{k} \mathbf{R}_{k} \rho \mathbf{R}_{k}^{\dagger}$$

This corrects an error channel $\rho \rightarrow \mathcal{E}(\rho)$ if for any ρ_c in the code space

$$\mathbb{R}\circ\mathcal{E}(\rho_c)=\rho_c.$$

QUANTUM ERROR CORRECTION CRITERIA

Theorem:

- Let C be a quantum code, with a basis $\left\{ \left| \phi_{k} \right\rangle \right\}$ for the code subspace.
- Suppose \mathcal{E} is an error channel with elements $\mathbf{E}_{\mathbf{L}}$.
- A necessary and sufficient condition for the existence of error recovery operations is

$$\langle \phi_{k} | E_{i}^{\dagger} E_{j} | \phi_{l} \rangle = \alpha_{ij} \delta_{kl}$$

where $\left(\alpha_{ij} \right)$ is hermitian.

Interpretation

Orthogonal codewords remain orthogonal after the errors $\frac{E_i \left| \phi_k \right\rangle \perp E_j \left| \phi_l \right\rangle}{E_i \left| \phi_l \right\rangle}$

QEC BEYOND BIT-FLIP ERRORS

Theorem: discretization of error channels

If the operation \mathcal{R} corrects the error channel \mathcal{E} , it corrects any other error channel \mathcal{F} whose elements F_k are linear combinations of elements E_k with complex coefficients:

$$\mathcal{R} \circ \mathcal{E}(\rho) = \rho \quad \Rightarrow \quad \mathcal{R} \circ \mathcal{F}(\rho) = \rho$$

Corollary: case of qubits

It sufficies to correct the operations $\{I, \sigma_x, \sigma_z, \sigma_y = i\sigma_x\sigma_z\}$ to correct for any single-qubit errors.

FULL QUANTUM ERROR CORRECTION

Four possible error channels for each qubit: I, X, Z, Y=iXZ

FULL QUANTUM ERROR CORRECTION

$$\begin{split} |0_L\rangle &= \frac{1}{\sqrt{8}} \left[|000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \right] \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle \\ \end{split}$$

$|0\rangle$ — HH $|0\rangle -$ HΗ $|0\rangle$ – HΗ $|0\rangle$ — HΗ $|0\rangle$ — HHH $|0\rangle$ — HXZZXZX ZZXZXL X XXZX XZТ XXZZ

Single round of error correction

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

STABILIZER QUANTUM ERROR CORRECTING CODES

Idea: quantum states could be represented by operators that stabilize them, e.g. the EPR state $|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ is the unique state such that

$$\boldsymbol{X}_{1}\boldsymbol{X}_{2}|\boldsymbol{\psi}\rangle = |\boldsymbol{\psi}\rangle, \quad \boldsymbol{Z}_{1}\boldsymbol{Z}_{2}|\boldsymbol{\psi}\rangle = |\boldsymbol{\psi}\rangle$$

Pauli Group:

$$\mathbb{G}_{n} = \left\{ \boldsymbol{I}, \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \right\}^{\otimes n} \otimes \left\{ \pm 1, \pm i \right\}$$

Properties: $P^2 = \pm I$, $PQ = \pm QP$, $PP^{\dagger} = I$.

Stabilizer group: subgroup S of \mathbb{G}_n , all elements commute with each other and does not contain -I.

Stabilizer generators: Minimal set of operators \boldsymbol{g}_k that generate S:

$$\mathcal{S}=\subseteq \mathbb{G}_n$$

Stabilizer subspace: subspace of dimension 2^{n-r}

$$\mathcal{H}_{S} = \left\{ \left| \psi \right\rangle \left| S \right| \psi \right\rangle = \left| \psi \right\rangle \text{ for } S \in S \right\}$$

ERROR-CORRECTION CONDITIONS FOR STABILIZER CODES

Theorem:

Let S be the stabilizer for a quantum code. Suppose $\{E_k\}$ is a set of operators in G. A sufficient condition for the correctability of these errors is that one of the following holds

• $\boldsymbol{E}_{a}^{\dagger}\boldsymbol{E}_{b}\in\mathbb{S}$,

• There is an $M \in \mathbb{S}$ that anti-commutes with $E_a^{\dagger} E_b$.

Proof:

Case 1:
$$\left\langle \phi_{j} \middle| E_{a}^{\dagger} E_{b} \middle| \phi_{k} \right\rangle = \left\langle \phi_{j} \middle| \phi_{k} \right\rangle = \delta_{jk}$$

Case 2: $\left\langle \phi_{j} \middle| E_{a}^{\dagger} E_{b} \middle| \phi_{k} \right\rangle = \left\langle \phi_{j} \middle| E_{a}^{\dagger} E_{b} M \middle| \phi_{k} \right\rangle = -\left\langle \phi_{j} \middle| M E_{a}^{\dagger} E_{b} \middle| \phi_{k} \right\rangle = -\left\langle \phi_{j} \middle| E_{a}^{\dagger} E_{b} \middle| \phi_{k} \right\rangle$ and therfore $\left\langle \phi_{j} \middle| E_{a}^{\dagger} E_{b} \middle| \phi_{k} \right\rangle = 0$

STABILIZER CODES: EXAMPLES

Bit-flip code:

Taking
$$S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$$
 for error operators $E_k = X_k$
 $Z_1 Z_2 X_1 X_3 = -X_1 X_3 Z_1 Z_2, \quad Z_2 Z_3 X_1 X_3 = -X_1 X_3 Z_2 Z_3$
 $Z_1 Z_2 X_2 X_3 = -X_2 X_3 Z_1 Z_2, \quad Z_1 Z_3 X_2 X_3 = -X_2 X_3 Z_1 Z_3$
 $Z_1 Z_3 X_1 X_2 = -X_1 X_2 Z_1 Z_3, \quad Z_2 Z_3 X_1 X_2 = -X_1 X_2 Z_2 Z_3$

Steane code:

Stabilizer group:

 $S = < Z_1 Z_3 Z_5 Z_7, Z_2 Z_3 Z_6 Z_7, Z_4 Z_5 Z_6 Z_7, X_1 X_3 X_5 X_7, X_2 X_3 X_6 X_7, X_4 X_5 X_6 X_7 >$

Error operators:

$$\boldsymbol{E}_{1,\dots,7} = \boldsymbol{X}_{1,\dots,7}, \quad \boldsymbol{E}_{8,\dots,14} = \boldsymbol{Y}_{1,\dots,7}, \quad \boldsymbol{E}_{15,\dots,21} = \boldsymbol{Z}_{1,\dots,7}$$

STABILIZER CODES: LOGICAL OPERATIONS

Definition

Operators in \mathbb{G}_n that commute with \mathbb{S} : they act on the 2^{n-r} -dimensional stabilizer subspace.

Steane code:

Stabilizer group:

$$S = < Z_1 Z_3 Z_5 Z_7, Z_2 Z_3 Z_6 Z_7, Z_4 Z_5 Z_6 Z_7, X_1 X_3 X_5 X_7, X_2 X_3 X_6 X_7, X_4 X_5 X_6 X_7 >$$

Logical operators:

$$\overline{Z} = Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7, \qquad \overline{X} = X_1 X_2 X_3 X_4 X_5 X_6 X_7, \qquad \overline{Y} = i \overline{X} \overline{Z}$$

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

FAULT-TOLERANCE

Central idea: through operations, one should not introduce new error channels not taken into account by QEC. In particular, one should avoid propagation/amplification of errors

Example of parity measurements: simplest circuit to measure the parity $Z_1Z_3Z_5Z_7$ for the Steane code.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $Z_1Z_3Z_5Z_7$ for the Steane code.

A phase-flip of the ancilla qubit propagates to memory qubits.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $Z_1Z_3Z_5Z_7$ for the Steane code.

A phase-flip of the ancilla qubit propagates to memory qubits.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $Z_1Z_3Z_5Z_7$ for the Steane code.

A phase-flip of the ancilla qubit propagates to memory qubits.

TOWARDS A SOLUTION

Idea N1: transversal operations

- Each ancilla qubit couples to no more than one memory qubit.
- We readout more than the required information (ancillas get entangled to the codeword).

J. Preskill, Fault-tolerant quantum computation, 1997.

TOWARDS A SOLUTION

Idea N2: encoding ancillas

- The parity of the data qubits is mapped on the parity of the Shor state.
- An error in preparation of the Shor state can propagate.

J. Preskill, Fault-tolerant quantum computation, 1997.

TOWARDS A SOLUTION

Idea N3: verification of ancillas

- Parity measurement is launched if the 5th qubit is measured in 0.
- Otherwise repeat the preparation.

J. Preskill, Fault-tolerant quantum computation, 1997.

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

A UNIVERSAL SET OF LOGICAL GATES

Single qubit gates

Hadamard
$$H$$
 $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} X + Z \end{pmatrix}$
Phase S $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = \exp(i\pi/4)\exp(-i\pi/4Z) = T^2$
 $\pi/8$ T $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} = \exp(i\pi/8)\exp(-i\pi/8Z)$

Two qubit gate

C-NOT
$$\underbrace{\textbf{CNOT}}_{0 \text{ or } 0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = |0\rangle\langle 0| \otimes \textbf{I} + |1\rangle\langle 1| \otimes \textbf{X}$$

BACK TO STABILIZER CODES: EXAMPLE OF STEANE

Logical operations and action of gates:

Logical operators: $\overline{Z} = Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7$, $\overline{X} = X_1 X_2 X_3 X_4 X_5 X_6 X_7$, $\overline{Y} = i \overline{X} \overline{Z}$ Logical Hadamard: $\overline{H} \overline{Z} \overline{H} = \overline{X}$, $\overline{H} \overline{X} \overline{H} = \overline{Z}$, $\overline{H} \overline{Y} \overline{H} = -\overline{Y}$ Logical Phase: $\overline{SZS} = \overline{Z}$, $\overline{SXS} = \overline{Y}$, $\overline{H} \overline{Y} \overline{H} = -\overline{X}$

Fault-tolerant choice:

BACK TO STABILIZER CODES: EXAMPLE OF STEANE

BACK TO STABILIZER CODES: EXAMPLE OF STEANE

Fault-tolerant T-gate:

Requires fault-tolerant preparation/distillation of magic state

$$\frac{\left(\left|0\right\rangle_{L}+\exp(i\pi/4)\left|1\right\rangle_{L}\right)}{\sqrt{2}}$$

OUTLINE

Classical vs quantum error correction
Theory of quantum error correction
Stabilizer formalism
Fault-tolerant QEC
Fault-tolerant logical gates
Concatenation and threshold theorem
A brief introduction to surface codes
A brief introduction to continuous variable codes

CONCATENATION OF CODES

Concatenation of codes C₁ (size n₁) and C2 (size n₂)

We construct a code of size n_1n_2 , where each qubit of C_2 is replaced by a block of n_1 qubits encoded in C_1 .

Higher order QEC by concatenation		
	Level of concatenation	Error probability
	Physical qubits	$\boldsymbol{\mathcal{E}}_{0} = \boldsymbol{p}$
	1 st encoded level	$\varepsilon_1 = \boldsymbol{c}\boldsymbol{p}^2 = \boldsymbol{c}^{-1}(\boldsymbol{c}\boldsymbol{p})^2 (*)$
	2 nd encoded level	$\varepsilon_2 = \boldsymbol{c}(\boldsymbol{c}\boldsymbol{p}^2)^2 = \boldsymbol{c}^{-1}(\boldsymbol{c}\boldsymbol{p})^{2^2}$
	•	•
	•	•
	r'th encoded level	$\mathcal{E}_{r} = \boldsymbol{c} (\mathcal{E}_{r-1})^{2} = \boldsymbol{c}^{-1} (\boldsymbol{c} \boldsymbol{p})^{2^{r}}$

(*) For the Steane code $c \approx 10^4$

THRESHOLD THEOREM

A quantum circuit containing f(n) gates may be simulated with probability of error at most \mathcal{E} using

$$\mathcal{O}(f(n) \operatorname{poly}[\log(f(n)/\varepsilon)])$$

gates on hardware whose components fail with probability at most p, provided that $p < p_{th}$, and given reasonable assumptions on the noise.

TOWARDS AN ERROR-CORRECTED QUBIT

Three main strategies for implementing a logical qubit:

- A register of physical qubits with full gate operations
- A fabric of physical qubits with nearest neighbor gates
- A superconducting resonator with non-linear drives, non-linear dissipation and photon parity monitoring. These services are provided by Josephson junctions.

Shor (1995) Steane (1996) Gottesman, Kitaev, Preskill (2001) Kitaev (2006) M.M. et al. (2014)

OUTLINE

Classical vs quantum error correction
 Theory of quantum error correction
 Stabilizer formalism
 Fault-tolerant QEC
 Fault-tolerant logical gates
 Concatenation and threshold theorem
 A brief introduction to surface codes
 A brief introduction to continuous variable codes

SURFACE CODE: ENCODING

Stabilizers:

$$A_s = \prod_{j \in \text{star s}} X_j$$
 $B_p = \prod_{j \in \partial(p)} Z_j$

Stabilizer (protected) subspace:

$$\mathcal{L} = \left\{ \left| \boldsymbol{\xi} \right\rangle \left| \boldsymbol{A}_{s} \right| \boldsymbol{\xi} \right\rangle = \boldsymbol{B}_{p} \left| \boldsymbol{\xi} \right\rangle = \left| \boldsymbol{\xi} \right\rangle \right\}$$

Number of qubits:

$$n = L^2 + (L-1)^2$$

Number of independent stabilizers:

r = 2L(L-1)

Encoded space: $Dim(\mathcal{L}) = 2^{n-r} = 2$

Logical operators:

 $\boldsymbol{Z}_{L} = \prod_{j \in \boldsymbol{C}_{z}} \boldsymbol{Z}_{j} \qquad \boldsymbol{X}_{L} = \prod_{j \in \boldsymbol{C}_{x}} \boldsymbol{X}_{j}$

SURFACE CODE: PROTECTION

Black discs: measurement qubits White discs: data qubits

Fowler et al. (2012)

INCREASING THE NUMBER OF LOGICAL QUBITS

Turning off some stabilizer measurements:

Number of qubits: $\boldsymbol{n} = \boldsymbol{L}^2 + (\boldsymbol{L} - 1)^2$

Number of independent stabilizers: r = 2L(L-1)-1

Encoded space: $Dim(\mathcal{L}) = 2^{n-r} = 2^2$

How about code distance: 4 at max.

Solution?

Fowler et al. (2012)

INCREASING THE NUMBER OF LOGICAL QUBITS

Turning off some stabilizer measurements:

Number of qubits: $\boldsymbol{n} = \boldsymbol{L}^2 + (\boldsymbol{L} - 1)^2$

Number of independent stabilizers: r = 2L(L-1)-1

Encoded space: $\operatorname{Dim}(\mathcal{L}) = 2^{n-r} = 2^2$

How about code distance: 4 at max.

Solution: larger deffect

QUANTUM COMPUTATION WITH SURFACE CODES

- 1. Initialization: projectively measure logical operators
- 2. Moving qubits around (modifying stabilizer constraints)
- 3. CNOT gates between qubits (braiding operations)
- 4. Hadamard gate (modifying stabilizer constraints and physical Hadamard on a set of qubits)
- 5. S and T gates (magic state distillation and teleportation)

SURFACE CODE: ESTIMATED PERFORMACES

Error model:

1- attemting to perform a data qubit identitiy, but instead performing singlequbit X, Y, Z, each with proba p/3.

2- attemting to initilize |g> but instead preparing |e> with proba p.

3- attempting to perform H, but in addition one single-qubit operation X, Y, Z with proba p/3.

4- measurement error with proba p.

5- attempting to perform measure qubitdata qubit CNOT, but instead one of the two qubit operations $X_{1,2}$, $Y_{1,2}$, $Z_{1,2}$, X_1X_2 , X_1Y_2 , X_1Z_2 , Y_1X_2 , Y_1Y_2 , Y_1Z_2 , Z_1X_2 , Z_1Y_2 , Z_1Z_2 with proba p/15.

Fowler et al. (2012)

OUTLINE

Classical vs quantum error correction
 Theory of quantum error correction
 Stabilizer formalism
 Fault-tolerant QEC
 Fault-tolerant logical gates
 Concatenation and threshold theorem
 A brief introduction to surface codes
 A brief introduction to continuous variable codes

QUANTUM HARMONIC OSCILLATOR AND COHERENT STATES

Using classical control (e.g. laser, force), one can only make coherent displacements

SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR

Cat state of an oscillator

Wigner function $W(\beta)$

X

SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR

PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

Formulation with error channels: $\rho_{\delta t} = \mathcal{E}(\rho_0) = \sum_{l=0}^{\infty} \mathbf{E}_l \rho_0 \mathbf{E}_l^{\dagger}, \quad \mathbf{E}_l = \sqrt{\frac{\left(1 - e^{-\kappa \delta t}\right)^l}{l!}} e^{-\frac{\kappa \delta t}{2}a^{\dagger}a} a^l$

CAT PUMPING

driven damped harmonic oscillator :

CAT PUMPING

New type of drive : 2-photon exchange with the environment :

$$\mathbf{H} = i\mathcal{E}_{2}(\mathbf{a}^{2} - \mathbf{a}^{\dagger 2}), \quad \mathbf{L} = \sqrt{\kappa_{2}}\mathbf{a}^{2}$$

$$\begin{vmatrix} \mathbf{0}_{L} \rangle = \begin{vmatrix} \mathcal{C}_{\alpha}^{+} \rangle \\ \begin{vmatrix} \mathbf{1}_{L} \rangle = \begin{vmatrix} \mathcal{C}_{\alpha}^{-} \rangle \end{aligned}$$

Asymptotic 2D-manifold

$$\mathcal{M}_{2,\alpha} = \operatorname{span}\{\left|\mathcal{C}_{\alpha}^{+}\right\rangle, \left|\mathcal{C}_{\alpha}^{-}\right\rangle\} \qquad \alpha = \sqrt{2\varepsilon_{2}/\kappa_{2}}$$

Leghtas et al. Science (2015) 56

CHOICE OF QUBIT BASIS

$$|+_{z}\rangle = |C_{\alpha}^{+}\rangle = N_{+}(|\alpha\rangle + |-\alpha\rangle) = \sum c_{2n}|2n\rangle$$
$$|-_{z}\rangle = |C_{\alpha}^{-}\rangle = N_{-}(|\alpha\rangle - |-\alpha\rangle) = \sum c_{2n+1}|2n+1\rangle$$

Phase-flip errors induced by reasonable (local in the phase space) errors are suppressed exponentially in $|\alpha|^2$.

An arbitrary error channel on a harmonic oscillator:

$$\rho \to \mathbb{E}(\rho) = \sum_{k} E_{k}(a, a^{\dagger}) \rho E_{k}(a, a^{\dagger})^{\dagger}$$

A general identity:

$$\boldsymbol{E}(\boldsymbol{a},\boldsymbol{a}^{\dagger})\Pi_{\mathcal{M}_{2,\alpha}} = \boldsymbol{F}^{I}(\boldsymbol{a}^{2},\boldsymbol{a}^{\dagger 2},\boldsymbol{a}^{\dagger a})\Pi_{\mathcal{M}_{2,\alpha}} + \boldsymbol{F}^{X,\alpha}(\boldsymbol{a}^{2},\boldsymbol{a}^{\dagger 2},\boldsymbol{a}^{\dagger a})\boldsymbol{\sigma}_{X}^{L}$$

Where:

$$\mathcal{M}_{2,\alpha} = \operatorname{span}\left\{ \left| \alpha \right\rangle, \left| -\alpha \right\rangle \right\}, \quad \sigma_{X}^{L} = \left| C_{\alpha}^{+} \right\rangle \left\langle C_{\alpha}^{-} \right| + \left| C_{\alpha}^{-} \right\rangle \left\langle C_{\alpha}^{+} \right|$$

Correctability criteria for the cat-code:

$$\Pi_{\mathcal{M}_{2,\alpha}} \mathbf{F}_{j}^{\dagger} \mathbf{F}_{k} \Pi_{\mathcal{M}_{2,\alpha}} = c_{jk} \Pi_{\mathcal{M}_{2,\alpha}}$$

An appropriate basis for the error operators:

$$\boldsymbol{F}(\boldsymbol{a}^{2},\boldsymbol{a}^{\dagger 2},\boldsymbol{a}^{\dagger 2},\boldsymbol{a}^{\dagger a})\Pi_{\mathcal{M}_{2,\alpha}} = \int_{\operatorname{Re}(\beta)>0} d^{2}\beta u^{\alpha}(\beta)(\boldsymbol{D}_{\beta} + \boldsymbol{D}_{-\beta})\Pi_{\mathcal{M}_{2,\alpha}}$$

It is enough to illustrate the correctability of the symmetric displacement operators.

Gottesman, Kitaev, Preskill, PRA, 2001.

Under the condition of small displacements: $|\beta| \le R_{\max}$

$$\Pi_{\mathcal{M}_{2,\alpha}} (\boldsymbol{D}_{\beta_1} + \boldsymbol{D}_{-\beta_1})^{\dagger} (\boldsymbol{D}_{\beta_2} + \boldsymbol{D}_{-\beta_2}) \Pi_{\mathcal{M}_{2,\alpha}} = c_{\beta_1,\beta_2} \Pi_{\mathcal{M}_{2,\alpha}} + \varepsilon \sigma_Z^L$$

Where: $\varepsilon \leq 4 e^{-2(|\alpha| - R_{\max})^2}$

Furthermore pumping is the correction operation:

$$\mathbb{R}_{\text{pump}} \circ \mathbb{F}(\rho) = \rho + \mathcal{O}\left(e^{-c(|\alpha| - R_{\text{max}})^2}\right)$$

Example 1: photon-loss channel

$$\boldsymbol{E}_{k} = \sqrt{\frac{\left(1 - \boldsymbol{e}^{-\kappa\delta t}\right)^{k}}{k!}} \boldsymbol{e}^{-\frac{\kappa\delta t}{2}\boldsymbol{a}^{\dagger}\boldsymbol{a}} \boldsymbol{a}^{k}$$

Therefore

$$F_{2k}\Pi_{\mathcal{M}_{2,\alpha}} = F_{2k+1}\Pi_{\mathcal{M}_{2,\alpha}} = \alpha^{2k} \sqrt{\frac{(1 - e^{-\kappa\delta t})^{2k}}{(2k)!}} e^{-\frac{\kappa\delta t}{2}a^{\dagger}a} \Pi_{\mathcal{M}_{2,\alpha}}$$

Leading to

$$\mathbb{R}_{\text{pump}} \circ \mathbb{F}(\rho) = \rho + \mathcal{O}\left(e^{-c|\alpha|^2 e^{-\kappa\delta t}}\right)$$

Example 2: phase-noise due to dispersive coupling to a hot mode

$$\boldsymbol{H}_{\text{int}} = -\hbar \chi \boldsymbol{a}^{\dagger} \boldsymbol{a} \boldsymbol{b}^{\dagger} \boldsymbol{b} \quad \text{with} \quad \rho_b^s = \sum p_n |n\rangle \langle n|$$

Set of error operators:

$$F_k = \sqrt{p_n} e^{i\chi n\delta t a^{\dagger} a}$$

Leading to

$$\mathbb{R}_{\text{pump}} \circ \mathbb{F}(\rho) = \rho + \mathcal{O}\left(\sum p_n e^{-c \max(|\alpha| \cos(\chi n \delta t), 0)^2}\right).$$

TOWARDS FULL PROTECTION:

Two approaches:

- Multi-component cats: 4-photon pumping for protection against photon annihilation operator.....
- Multi-mode cats: Protection against logical bit-flips. This is more general as it includes any remaining error channel: photon loss, thermal excitations, higher-order non-linearities....

CAT PUMPING

New type of drive : 4-photon exchange with the environment :

$$\mathbf{H} = i\mathcal{E}_4(\mathbf{a}^4 - \mathbf{a}^{\dagger 4}), \quad \mathbf{L} \propto \sqrt{\kappa_4} \mathbf{a}^4$$

Asymptotic 4D-manifold

$$\mathcal{M}_{4,\alpha} = \operatorname{span}\{\left|\mathcal{C}_{\alpha}^{+}\right\rangle, \left|\mathcal{C}_{i\alpha}^{+}\right\rangle, \left|\mathcal{C}_{\alpha}^{-}\right\rangle, \left|\mathcal{C}_{i\alpha}^{-}\right\rangle\}$$
$$\alpha = \sqrt[4]{2\varepsilon_{4}/\kappa_{4}}$$

M.M. *et al.* NJP (2014),

$$\begin{vmatrix} \mathbf{0}_{L} \rangle = \begin{vmatrix} \mathcal{C}_{\alpha}^{+} \rangle \\ \begin{vmatrix} \mathbf{1}_{L} \rangle = \begin{vmatrix} \mathcal{C}_{i\alpha}^{+} \rangle \end{vmatrix}$$

HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

Idea:

$$|0_{L}\rangle = |C_{\alpha}^{+}\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle + |-\alpha\rangle) \quad |1_{L}\rangle = |C_{i\alpha}^{+}\rangle = \frac{1}{\sqrt{2}}(|i\alpha\rangle + |-i\alpha\rangle)$$

HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

Another possibility:

$$|0_{L}\rangle = |C_{\alpha}^{-}\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle - |-\alpha\rangle) \quad |1_{L}\rangle = |C_{i\alpha}^{-}\rangle = \frac{1}{\sqrt{2}}(|i\alpha\rangle - |-i\alpha\rangle)$$

TO LIVE AND DIE IN A CAVITY

*Ofek et al., Nature 536, 441-445, 2016.

QUANTUM COMPUTATION WITH CAT CODES

- 1. Half-protected logical gates through Zeno dynamics
- 2. Fault-tolerant photon number parity measurements

3. Higher-order codes and fully protected logical gates (ungoing)

M.M. et al., NJP, 2014 J. Cohen et al., PRL, 2017 S. Rosenblum et al., In press.