Ion beam lithography

- •Progress in ion technology spot size <10nm
- •Direct writing : resist, milling, implantation
- •lons rapidely absorbed by matter –almost no proximity effect
- •low dose -
- •3D structures possibles

lons trajectories

Liquid Metal Ion Source (LMIS)

Time (hours)

Energy dispersion : 4eV Spot size limited by chromatic aberratrions : 3nm Brgihtness 10⁶A/cm².sr Good current stability

examples

30kV ions Gallium

Hole in a Si₃N₄ membrane

LPN Marcoussis

3nm hole pierced in a 20nm thick SiC membrane

LPN Marcoussis

Inorganic resist AlF3

LPN Marcoussis

Magnetic field patterning

Kerr image of the patterned PtCoPt film (Ga⁺ ions, 30 keV, 5 10¹⁵ ions/cm²). define stable domains: 1500 nm, 750 nm, 300 nm, 50 nm 3D shape

Helium microscope

An atomic size source

Source is one atome \rightarrow spot size can be as low as 0.35nm on sample

Small spatial extension of the diffused He ions

SEM images are produced by SE1 and SE2 electron Here it is mostly SE1 small sppatial extension and sensitivity to surface

Overall equipment

Gaz injector W, Pt, SiO₂

Electron detector

Plasma cleaner

A versatile tool

Microscope : high resolution, sensitive to surface, very high deep of focus, flood to neutralize ions allows imaging insulator and biological stuff

Lithography : high sensitivity, high resolution, no proximity effect.

Direct milling : low damage (low sputter yield) high precision, no interdiffusion (Ga ions) . Possibility to use Neon for higher yield but less stability and resolution

Beam induced deposition : W , Pt ,SiO₂ no contamination

microscopy

lithography

milling

deposition

148 June 2018

A microscope

High resolution and sensitivity to the surface

High depth of focus

168 June 2018

High resolution lithography with HSQ

Small spot size high resolution

High yield high sensitivity

Very small proximity effects

High DoF high aspect ratio

Ligne 9.7nm HSQ 20nm

Plot 5nm HSQ 20nm

nanolithography

Development on a new resist based on Aluminum oxide.

Better resist profile and roughness than HSQ

Width below 10nm can be easily achieved with an aspect ration higher than 4.

Dense lines

RIE etching of Silicon with the AlOx resist

Good selectivity with fluorine based etching. We obtain 5nm width and 40nm height Silicone nanowires. E 68 jaart eV 2002 tang Graz

AIOx resist

268 jaunt ev 2002 tang Graz

High precision milling

Hole in suspended graphene : dia<5nm

Nanogap etched on a gold bridge for molecule grafting (collab C2N, ICMMO) **Z28** June 2018

etching

Beam induced deposition

Precursors mostly metal carbonyls: Me(CO)x W(CO)₆, Fe(CO)₅ For platinium :C₅H₄CH₃Pt(CH₃)₃ For cooper : Cu(C₅HF₆O₂)₂

usually C contimination

Growing W wire (in fact $W_{0.7}C_{0.3}$)

58 June 2018

Commercial equipment

Source Gallium 30kV

750k€

Source Hélium or Néon 30kV

1.2M€

The dual beams

Electron column: insitu real time Observation

lon column : milling, cutting and beam induced deposition.

TEM preparation

Near field lithography

Near field methodology

Electric pulse Mechanical pressure threshold

Under threshold \rightarrow Alignment, observation

More pratical : local anodization

exemples

Carte de France (32,000 atomes d'or enleves) L2M 04081014.501

Monolayer nanolithography on gold film L2M/CNRS 04271526.521

Other examples

Anodisa²on of GaAs

Anodisation du Nb

SQUID CRTBT

Engraving resist with an AFM tip

Single electron transistor made by AFM litho – PhD thesis V. Bouchiat

isotropic dry etching

isotropic dry etching

Nano-imprint

Slow process, mask 1/1 scale i.e. ebeam lithography 10nm resolution demonstrated , very cheap

examples

UV assisted imprint

Resist hardening underUV

Faster

resolution

Commercial equipment

Roller lithography

Easy and rapid but simple pattern – solar cells?

Soft lithography

PDMS mold

microfluidics

Fluidigm (USA)

Litho 3D laser

The wavelength of the LASER ido not produce any change in the resist

But at the focal point where the intensity is very strong

- -> Two photons process
- -> resist polymerisation

The sample is scanned under the focal point

Resolution 200nm à 300nm

Conclusions on lithography

Technique		Resolution	Use	Remarks
Optical lithograpphy	contact	0.25 ⊵ m	Labs et R&D	Cheap intermediate resolution
	proximity	2⊡m	Labs and R&D	Cheap but low resolution
	projection	20nm	Industry	Very expensive
EUV		<10nm?	Industry	Need some work 2020?
Ebeam lithography		1nm	Labs et R&D Mask making	Easy to handle no mask very high resolution Intermediate cost
Ion beam lithography		1nm	Labs et R&D	Milling and lithography diagnostic
Near field lithography		Atom 10nm	Labs	Very slow, cheap for specific appl.
Nano-imprint		10nm	Labs and industry?	Cheap, alignment issu specific

Transfert techniques

Wet etchnigIon etchingReactive ion beam etchnig

Wet etchnig

after mask removal

Difficult to control : if weak chemistry long time but surface state important

Anisotropic wet etching (crystalline material)

MEMS suspended structures

Ion Beam Etching (IBE)

Mechanical impact of the ionsEtchnig rate T

 $T \propto \frac{E}{ZU}$

U Binding energy Z atomic number E ion energy x coeff (angle)

Typical energy: 100eV to 2kV

Ion beam etching

Reactive ion etching: RIE

Plasma = partially ionized gase with ions (+or -) électrons and neutral species

Create by radiofrequency or microwave discharge at gase pressure typically 100Pa (1Torr)

Although the gase is at ambient temperature, the electron energy create very active ions radicals usually obtained at high temperature

Chemical reactivity of the surface is also modified by the impact of the ions.

The interplay between chemical and physical effect give rise to very anisotropic and high rate etching.

Plasmas are quite complex systems and it is difficult to master all the parameters.

Autopolarisation

Speed of electron >> speed of ion because of mass difference During an RF cycle all electrons reach the electrode but not all the ions

DC polarisation lock by the capacity

The ions are accelerated by this voltage to the sample

Autopolarisation

At the first positive voltage an important flux of electrons arrive on the electrode but at the next negative one a much smaller number of ions arrive. A negative voltage built up and repell the electrons. The stationary state arise when the flux of electrons = flux of ions.

autopolarisation

small sheath

large sheath

sample

The polarisation depends on the ratio between the two electrodes. The mass electrode include the wall of the reactor and Vdc >> Vp

plasma

The pollution of the reactor change the area of the mass electrode and the polarisation evolve with time

chemistry

Chemical aspects

Example: CF4 is not active on Si but F is active

The desorption process of the chemical reaction is important otherwise the surface is passivated.

Ex : Al react with F \rightarrow AIF3 but vapor pressure AIF3 1 torr even at 1000°C

Si + F \rightarrow SiF	non volatile
SiF + F \rightarrow SiF2	non volatile
$SiF2 + F \rightarrow SiF3$	non volatile
$SiF3 + F \rightarrow SiF4$	volatile

The chemical reaction are activated by electrons and ions bombardment creating active sites.

•• Passivation gase

The edge which are less bombarded are protected

Bosch

MEMS application

Spring - Klaassen, et al, 1995

(Collège de France-LPN-ESIEE)

RIE Pros

- ➤Easy to handle
- ≻High rate
- ≻Selectivity
- ≻Anisotropy
- ≻No redeposition

RIE Cons

- Sensitive to pollution drift in etch rate
- ➢Plasma density quite small 10¹⁰ cm⁻³
- >Energy and pressure are linked difficult to separate physic to chemistry

Examples RIE

1,94µm x 6,25µm

AIAs/GaAs micropillar

depth 1.2µm diameter0.4µm

Reactive Ion Beam Ething: RIBE

Idem IBE but with chemical ions instead of Argon

Complete separation between energy and chemistry

≻Give impressive aspect ratio

>Quite high voltage \rightarrow defects

Needs plasma electron source (filament burn)

Example RIBE

Electron Cyclotron Resonance

There is a space slab where cyclotron and microwave are in phase

Plasma density 10¹³cm⁻³

Example ECR etching

Center Edge 0.1-µm HARC

All fabrication steps successful

ICP : inductively Coupled Plasma

The oscillating magnetic field create an electric field :cf Maxwell $\vec{rot}\vec{E} = \frac{-\partial B}{\partial t}$

The plasma is better confined than with condensator plate

A voltage applied on the substrate holder allows to control the energy of the impining ions

density10¹²cm⁻³