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Outline of the course

courses 1 — 2: basics of quantum computing and standard algorithms (Anthony Leverrier)

» May 29 (9:15 - 10:45): basics of quantum computing: qubits, measurements, circuit
model, query complexity model, Simon’s algorithm

> June 5 (11:00 — 12:30): quantum Fourier transform, Shor’s algorithm, Grover’s algorithm

courses 3 —4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)

» June 18: basics of quantum error correction (discretization of errors, Shor an Steane
codes) and fault-tolerance

> June 25: towards experimental implementation: surface codes and continuous-variable
codes
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Last week

» several equivalent models for quantum computing: circuit, adiabatic,
measurement-based . . .
» 2 models of quantum complexity

» standard model: input is a classical string, quantum circuit and measurement in the
computational basis, what is the number of gates?

» query complexity model: input given as a black box (ex: function), how many queries are
made to the black box?

» Simon’s algorithm: exponential speedup compared to classical randomized algorithms
in the quantum query complexity model
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Outline of the course

Simon’s algorithm

quantum Fourier transform: exponential speedup, if input and output encoded in a
quantum state

Shor’s algorithm for factoring

Grover’s search algorithm
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Simon’s algorithm
Exponential speedup for query complexity (we count queries, not ordinary operations)
hidden period for 2-to-1 function
Input: f:{0,1}* — {0, 1}" with the property that 3s # 0 € {0, 1}" such that

f(x) =1(y) <= (x=y or x=yds).
Find s.
complexity

» randomized classical algorithm in O(y/2") queries with birthday paradox
> this is essentially optimal for classical algorithms

» quantum (Simon’s algorithm): O(n) queries

— exponential separation quantum vs randomized classical
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Simon’s algorithm
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Measure 2nd n-bit register: yields f(x) € {0, 1}", collapses the first register to superposition of 2
indices compatible with f(x)
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Simon’s algorithm

Measure state

1 it s
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lj) has nonzero amplitude iff s-j =0 mod 2.

» The measurement outcome is uniformly drawn from {j|s-j =0 mod 2}.

v

= linear equation giving information about s
> repeat until we get n — 1 independent linear equations

» solutions are 0 and s via Gaussian elimination (classical circuit of size O(n3) )

—> exponential speedup in the query complexity model! Can we get it in the standard
model as well?
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Classical discrete Fourier transform

For N, define wy = e?™/N the N-th root of identity, and the N x N matrix:

FNzi S Wy

We’ll be mostly interested in the case N = 2.

For v € RN, the Fourier transform of v is

v = Fnv
N-1
for je€{0,N—1}, 9= Z wWiv
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Complexity of discrete Fourier transform

Naive classical algorithm

matrix multiplication: O(N) additions/multiplications per entry

= O(N?) steps

Fast Fourier Transform

Recursive procedure: compute 2 FT for N/2 and combine

=—> O(NlogN) steps

Quantum Fourier Transform

Fx is a unitary matrix: can be interpreted as a quantum operation on n = logy N qubits.

If input and output are encoded as |v) = YNt vili) and |¢) = Yt 6ii)

= O(log?N) steps ==  exponential speedup!
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Efficient quantum circuit for the n-qubit QFT (N = 2")
linearity: sufficient to implement QFT on basis states |x) = |x1xg - - - Xy) with x; € {0, 1}

QFT: |x) — Fx|x) = ﬁ }\101 aJN |J>

Insight: Fx|x) is a product state!
integer in binary notation: x = x3Xg - - - X, (X3 = most significant bit)
1 N-1

=

7r13x/2n i (e 13[2 X‘J >

Fy|x)

(§]

—.
o

1 N—-1 n p )
H 7(1“)(/2 . .]n>
J:0 /=1
_ \1[ ( 2nix/2f|1>>

J—

— sufficient to prepare qubits of the form \/Li 0) + eZ"i[O-anHlxxffH“'Xn]|1>)
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Efficient quantum circuit for the n-qubit QFT

Allowed gates
L (11
» Hadamard gate: |0) <> |+), 1) < |—) H= v A
: . 271/ 28 _ 1 0
» phase-flip gate Rs: |0) — [0), [1) — e 1) Ry = 0 o2/
example:

) 1 ) 1 )
FN|X1X2X3> 7 (|O> 27'(1[0.)(3] |1>) ® E <|0> + e27‘[1[0.x2)(3] |1>) ® E <‘0> + eQm[O.xlexg] |1>)
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Efficient quantum circuit for the n-qubit QFT
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Complexity

> n qubits
» at most n gates applied to each qubit
» total number of gates < n? = (logy N)?

» the phase gates are almost equal to the identity for s > logn, so the corresponding
gates can be omitted without causing much error

» complexity ~ nlogn

Note that the inverse Fourier transform is obtained by reversing the circuit and taking R_g
instead of Rg
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Factoring

Given a composite number N, find a factor of N.

» Best (known) classical algorithm: complexity 9(logN)!/?

» Shor’s algorithm: complexity (log N)? steps

Reduction to period finding

efficient algorithm for period finding = efficient algorithm for factoring
choose random integer x € {2,--- ,N — 1} coprime to N and define

f(a) =x* mod N

f(O) =1 mod N, f(l) =x mod N, f(2) = X2 mod N - -

This sequence is cyclic with period r = find 1!
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Reduction to period finding

f(a) =x* mod N

Lemma

With probability > 1/2, the period r is even and x*/2 + 1 and x*/? — 1 are not multiples of
N.

Then,
=1 modN <= (x/?)2?=1 mod N
— X?+1D)E?-1)=0 modN
— (x*’?24+1)(x*’?=1) =kN for some k>0
Then x™/2 + 1 or x*/2 — 1 shares a factor with N.

With Euclid algorithm, one can recover ged(x*/2 & 1, N) efficiently, which gives non-trivial
factors of N.
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f can be computed efficiently

f(a) =x* mod N

idea: repeated squaring
» compute x2 mod N, x* mod N,x® mod N, ...

> write a in binary: a =) ;> ai2'

a __ 2t
> X" = Hi:aizlx

Complexity

O((log N)2loglog N log log log N) steps

= a quantum circuit for Ug : [a)|0") — |a)|f(a)) has the same complexity

— we don’t need to work in the oracle model since we can implement the function

quantumly
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Quantum circuit for factoring

same circuit as Simon’s algorithm, with Hadamard < QFT

|0°) 7 Fq

0%) —

Ug

Fq

v

v

v

q = 2% such that N? < q < 2N2

black-box Ug : |a)|0™) — |a)|f(a))

requires O((log N)?loglog Nlogloglog N) steps

= this is the costly part of the algorithm!

v

n = [logN| qubits
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Quantum circuit for factoring

|0°) 7—1Fq
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Measure second register and get f(s) for s <r

—> first register collapses to

Y lay|o™)
1
- jlaglaﬂf(a»

E):
E):

sy +|r+s)+]2r+s)+[3r+s)+ -+ [(m—1)r+s)

with m ~ q/r
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Quantum circuit for factoring
QFT applied to %B Yot [ir +8) yields
1mzlqu2 )b/ Zz b/ mi:lzw/
mi(jr+s) q’b e misb/q e mtijrb/q |b>
VAR RV =0

what are the b with large amplitude?

2mith

mil?"b/ m ife™a =1

mijtb/q __ mrb

Y e I P T o A

=0 27i Ib e 7
l1—e™ 4

v

yields with high probability a value b such that rb/q is close to an integer ¢

v

One can find efficiently (with continued fractions) the value of ¢

» ¢ and r will be coprime with probability 2(1/ loglogr), which will occur after
O(loglog N) repetitions of the procedure

v

in that case, one obtain r as the denominator by writing ¢/r in lowest terms.
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The search problem

The problem

Input: function f : {0,1}™ — {0,1}. Find x such that f(x) = 1 or output no solution if no
such x.

Complexity
» randomized classical algorithm: @(2") queries if single correct value

» Grover’s algorithm: O(1/2") queries and O(ny/2") other gates

=—> quadratic speedup

A. Leverrier Quantum computing IQUPS 2018 22/26



Idea of the algorithm

Start with uniform superposition (via Hadamard):

1
Y |x) =sin6|G) + cos6|B)
ﬁxe{o,l}“
> sinf = v/t/2" and = #{le(X) =1}
» good state |G) = \[ Loxs.t.f(x)=1 |X>
» bad state ’B> \/2“7 szt f(x)=0 |X>

U) =

goal: rotate in the {|B), |G)} plane to reach |G)
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How to implement rotation

perform two reflections:
» through |B) by calling the oracle O+ : |x) — (—=1)f®)|x)

» through |U) by H®*RH®" = 2|U)(U| — 1, where R : |x) — (—1)F70"|x)

define G = H*"RH*"O¢ + = rotation of angle 26
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Grover’s algorithm

assuming we know the fraction of solutions t/2" = sin? 6 ~ 62

10) |
n 0) g g G — measure
0) -

start with |U) = H®»|0)
repeat k ~ "2—/92 = O(1/+/t/2") times the rotation G of angle 26

measure and check that the outcome is a solution

A. Leverrier Quantum computing IQUPS 2018

25/26



Recap

» quantum Fourier transform: exponential speedup compared to classical: log? N vs
NlogN

» seems like cheating because input and output are encoded in quantum states, and not
classically accessible

» yet, this is the main ingredient for Shor’s algorithm

» more recently (2009): HHL algorithm solves linear equations Ax = b in O(logn) time
(exponential speedup) if solution encoded as |x) o Y ; x|i)

» seems again like cheating, but useful for quantum machine learning algorithms

» to be continued ...

next talks

Mazyar Mirrahimi on the challenges to build a quantum computer (error correction and
fault-tolerance)
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