Introduction to quantum computing

Anthony Leverrier, Inria Paris
\&
Mazyar Mirrahimi, Inria Paris

IQUPS course 2018

Outline of the course

courses 1 - 2: basics of quantum computing and standard algorithms (Anthony Leverrier)

- May 29 (9:15-10:45): basics of quantum computing: qubits, measurements, circuit model, query complexity model, Simon's algorithm
- June 5 (11:00-12:30): quantum Fourier transform, Shor's algorithm, Grover's algorithm

```
courses 3-4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)
```

- June 18: basics of quantum error correction (discretization of errors, Shor an Steane codes) and fault-tolerance
- June 25: towards experimental implementation: surface codes and continuous-variable codes

Last week

- several equivalent models for quantum computing: circuit, adiabatic, measurement-based ...
- 2 models of quantum complexity
- standard model: input is a classical string, quantum circuit and measurement in the computational basis, what is the number of gates?
- query complexity model: input given as a black box (ex: function), how many queries are made to the black box?
- Simon's algorithm: exponential speedup compared to classical randomized algorithms in the quantum query complexity model

Outline of the course

- Simon's algorithm
- quantum Fourier transform: exponential speedup, if input and output encoded in a quantum state
- Shor's algorithm for factoring
- Grover's search algorithm

Simon's algorithm

Exponential speedup for query complexity (we count queries, not ordinary operations)

hidden period for 2-to-1 function

Input: $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$ with the property that $\exists \mathrm{s} \neq 0 \in\{0,1\}^{\mathrm{n}}$ such that

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \Longleftrightarrow(\mathrm{x}=\mathrm{y} \quad \text { or } \quad \mathrm{x}=\mathrm{y} \oplus \mathrm{~s})
$$

Find s.

complexity

- randomized classical algorithm in $\mathrm{O}\left(\sqrt{2^{\mathrm{n}}}\right)$ queries with birthday paradox
- this is essentially optimal for classical algorithms
- quantum (Simon's algorithm): O(n) queries
\Longrightarrow exponential separation quantum vs randomized classical

Simon's algorithm

$$
\left|0^{\mathrm{n}}\right\rangle\left|0^{\mathrm{n}}\right\rangle \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\} \mathrm{n}}|\mathrm{x}\rangle\left|0^{\mathrm{n}}\right\rangle \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\} \mathrm{n}}|\mathrm{x}\rangle|\mathrm{f}(\mathrm{x})\rangle
$$

Measure 2nd n-bit register: yields $f(x) \in\{0,1\}^{n}$, collapses the first register to superposition of 2 indices compatible with $f(x)$

$$
\frac{1}{\sqrt{2}}(|\mathrm{x}\rangle+|\mathrm{x} \oplus \mathrm{~s}\rangle)|\mathrm{f}(\mathrm{x})\rangle
$$

Hadamard to first n qubits:

$$
\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{j \in\{0,1\}^{n}}(-1)^{x \cdot j}|j\rangle+\sum_{j \in\{0,1\}^{n}}(-1)^{(x \oplus s) \cdot j}|j\rangle\right)=\frac{1}{\sqrt{2^{n+1}}} \sum_{j \in\{0,1\}^{n}}(-1)^{x \cdot j}\left(1+(-1)^{s \cdot j}\right)|j\rangle
$$

Simon's algorithm

Measure state

$$
\frac{1}{\sqrt{2^{\mathrm{n}+1}}} \sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{x} \cdot \mathrm{j}}\left(1+(-1)^{\mathrm{s} \cdot \mathrm{j}}\right)|\mathrm{j}\rangle
$$

- $|\mathrm{j}\rangle$ has nonzero amplitude iff $\mathrm{s} \cdot \mathrm{j}=0 \bmod 2$.
- The measurement outcome is uniformly drawn from $\{\mathrm{j} \mid \mathrm{s} \cdot \mathrm{j}=0 \bmod 2\}$.
- \Longrightarrow linear equation giving information about s
- repeat until we get $\mathrm{n}-1$ independent linear equations
- solutions are 0 and s via Gaussian elimination (classical circuit of size $O\left(n^{3}\right)$)
\Longrightarrow exponential speedup in the query complexity model! Can we get it in the standard model as well?

Quantum Fourier Transform

Classical discrete Fourier transform

For N, define $\omega_{N}=e^{2 \pi i / N}$ the N-th root of identity, and the $N \times N$ matrix:

$$
\mathrm{F}_{\mathrm{N}}=\frac{1}{\sqrt{\mathrm{~N}}}\left(\begin{array}{ccc}
& \vdots & \\
\ldots & \omega_{\mathrm{N}}^{\mathrm{jk}} & \cdots \\
& \vdots &
\end{array}\right)
$$

We'll be mostly interested in the case $\mathrm{N}=2^{\mathrm{n}}$.
For $\mathrm{v} \in \mathbb{R}^{\mathrm{N}}$, the Fourier transform of v is

$$
\begin{gathered}
\hat{v}=F_{N} v \\
\text { for } j \in\{0, N-1\}, \quad \hat{v}_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_{N}^{j k} v_{k}
\end{gathered}
$$

Complexity of discrete Fourier transform

Naïve classical algorithm

matrix multiplication: $\mathrm{O}(\mathrm{N})$ additions/multiplications per entry

$$
\Longrightarrow \mathrm{O}\left(\mathrm{~N}^{2}\right) \text { steps }
$$

Fast Fourier Transform

Recursive procedure: compute 2 FT for N/2 and combine

$$
\Longrightarrow \mathrm{O}(\mathrm{~N} \log \mathrm{~N}) \quad \text { steps }
$$

Quantum Fourier Transform

F_{N} is a unitary matrix: can be interpreted as a quantum operation on $\mathrm{n}=\log _{2} \mathrm{~N}$ qubits. If input and output are encoded as $|\mathrm{v}\rangle=\sum_{i=0}^{\mathrm{N}-1} \mathrm{v}_{\mathrm{i}}|\mathrm{i}\rangle$ and $|\hat{\mathrm{v}}\rangle=\sum_{\mathrm{i}=0}^{\mathrm{N}-1} \hat{\mathrm{v}}_{\mathrm{i}}|\mathrm{i}\rangle$

$$
\Longrightarrow \mathrm{O}\left(\log ^{2} \mathrm{~N}\right) \text { steps } \quad \Longrightarrow \quad \text { exponential speedup! }
$$

Efficient quantum circuit for the n-qubit QFT $\left(\mathrm{N}=2^{\mathrm{n}}\right)$

linearity: sufficient to implement QFT on basis states $|\mathrm{x}\rangle=\left|\mathrm{x}_{1} \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{n}}\right\rangle$ with $\mathrm{x}_{\mathrm{i}} \in\{0,1\}$
QFT: $|\mathrm{x}\rangle \mapsto \mathrm{F}_{\mathrm{N}}|\mathrm{x}\rangle=\frac{1}{\sqrt{\mathrm{~N}}} \sum_{\mathrm{j}=0}^{\mathrm{N}-1} \omega_{\mathrm{N}}^{\mathrm{jk}}|\mathrm{j}\rangle$

Insight: $\mathrm{F}_{\mathrm{N}}|\mathrm{x}\rangle$ is a product state!

integer in binary notation: $\mathrm{x}=\mathrm{x}_{1} \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{n}}\left(\mathrm{x}_{1}=\right.$ most significant bit $)$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{N}}|\mathrm{x}\rangle=\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{j}=0}^{\mathrm{N}-1} \mathrm{e}^{2 \pi \mathrm{ijx} / 2^{\mathrm{n}}}|\mathrm{j}\rangle & =\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{j}=0}^{\mathrm{N}-1} \mathrm{e}^{2 \pi \mathrm{i}\left(\sum_{\ell=1}^{\mathrm{n}} \mathrm{j}_{\ell} 2^{-\ell}\right) \mathrm{x}}\left|\mathrm{j}_{1} \cdots \mathrm{j}_{\mathrm{n}}\right\rangle \\
& =\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{j}=0}^{\mathrm{N}-1} \prod_{\ell=1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \mathrm{i}_{\ell} \mathrm{x} / 2^{\ell}}\left|\mathrm{j}_{1} \cdots \mathrm{j}_{\mathrm{n}}\right\rangle \\
& =\bigotimes_{\ell=1}^{\mathrm{n}} \frac{1}{\sqrt{2}}\left(|0\rangle+\mathrm{e}^{2 \pi \mathrm{ix} / 2^{\ell}}|1\rangle\right)
\end{aligned}
$$

\Longrightarrow sufficient to prepare qubits of the form $\frac{1}{\sqrt{2}}\left(|0\rangle+\mathrm{e}^{2 \pi \mathrm{i}\left[0 \cdot \mathrm{x}_{\mathrm{n}-\ell+1} \mathrm{x}_{\mathrm{x}-\ell+2} \cdots \mathrm{x}_{\mathrm{n}}\right]}|1\rangle\right)$

Efficient quantum circuit for the n-qubit QFT

Allowed gates

- Hadamard gate: $|0\rangle \leftrightarrow|+\rangle$,

$$
|1\rangle \leftrightarrow|-\rangle \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- phase-flip gate $\mathrm{R}_{\mathrm{s}}:|0\rangle \mapsto|0\rangle, \quad|1\rangle \mapsto \mathrm{e}^{2 \pi \mathrm{i} / 2^{\mathrm{s}}}|1\rangle$

$$
\mathrm{R}_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{2 \pi \mathrm{i} / 2^{\mathrm{s}}}
\end{array}\right)
$$

example:

$$
\mathrm{F}_{\mathrm{N}}\left|\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\mathrm{e}^{2 \pi \mathrm{i}\left[0 \cdot \mathrm{x}_{3}\right]}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\mathrm{e}^{2 \pi \mathrm{i}\left[0 \cdot \mathrm{x}_{2} \mathrm{x}_{3}\right]}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\mathrm{e}^{2 \pi \mathrm{i}\left[0 \cdot \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}\right]}|1\rangle\right)
$$

Efficient quantum circuit for the n-qubit QFT

Complexity

- n qubits
- at most n gates applied to each qubit
- total number of gates $\leq \mathrm{n}^{2}=\left(\log _{2} \mathrm{~N}\right)^{2}$
- the phase gates are almost equal to the identity for $\mathrm{s} \gg \log \mathrm{n}$, so the corresponding gates can be omitted without causing much error
- complexity $\approx \mathrm{n} \log \mathrm{n}$

Note that the inverse Fourier transform is obtained by reversing the circuit and taking $\mathrm{R}_{-\mathrm{s}}$ instead of R_{s}

Shor's algorithm

Factoring

Given a composite number N , find a factor of N .

- Best (known) classical algorithm: complexity $2^{(\log \mathrm{N})^{1 / 3}}$
- Shor's algorithm: complexity $(\log \mathrm{N})^{2}$ steps

Reduction to period finding

efficient algorithm for period finding \Longrightarrow efficient algorithm for factoring choose random integer $\mathrm{x} \in\{2, \cdots, \mathrm{~N}-1\}$ coprime to N and define

$$
f(a)=x^{a} \quad \bmod N
$$

$$
f(0)=1 \quad \bmod N, \quad f(1)=x \quad \bmod N, \quad f(2)=x^{2} \quad \bmod N \cdots
$$

This sequence is cyclic with period $r \quad \Longrightarrow$ find $r!$

Reduction to period finding

$$
f(a)=x^{a} \quad \bmod N
$$

Lemma

With probability $\geq 1 / 2$, the period r is even and $x^{r / 2}+1$ and $x^{r / 2}-1$ are not multiples of N.

Then,

$$
\begin{aligned}
\mathrm{x}^{\mathrm{r}} \equiv 1 \bmod \mathrm{~N} & \Longleftrightarrow\left(\mathrm{x}^{\mathrm{r} / 2}\right)^{2} \equiv 1 \bmod \mathrm{~N} \\
& \Longleftrightarrow\left(\mathrm{x}^{\mathrm{r} / 2}+1\right)\left(\mathrm{x}^{\mathrm{r} / 2}-1\right) \equiv 0 \quad \bmod \mathrm{~N} \\
& \Longleftrightarrow\left(\mathrm{x}^{\mathrm{r} / 2}+1\right)\left(\mathrm{x}^{\mathrm{r} / 2}-1\right)=\mathrm{kN} \quad \text { for some } \mathrm{k}>0
\end{aligned}
$$

Then $\mathrm{x}^{\mathrm{r} / 2}+1$ or $\mathrm{x}^{\mathrm{r} / 2}-1$ shares a factor with N .
With Euclid algorithm, one can recover $\operatorname{gcd}\left(\mathrm{x}^{\mathrm{r} / 2} \pm 1, \mathrm{~N}\right)$ efficiently, which gives non-trivial factors of N .
f can be computed efficiently

$$
f(a)=x^{a} \quad \bmod N
$$

idea: repeated squaring

- compute $\mathrm{x}^{2} \bmod \mathrm{~N}, \mathrm{x}^{4} \bmod \mathrm{~N}, \mathrm{x}^{8} \bmod \mathrm{~N}, \ldots$
- write a in binary: $\mathrm{a}=\sum_{\mathrm{i} \geq 0} \mathrm{a}_{\mathrm{i}} 2^{\mathrm{i}}$
- $\mathrm{x}^{\mathrm{a}}=\prod_{\mathrm{i}: \mathrm{a}_{\mathrm{i}}=1} \mathrm{x}^{2^{\mathrm{i}}}$

Complexity

$\mathrm{O}\left((\log \mathrm{N})^{2} \log \log \mathrm{~N} \log \log \log \mathrm{~N}\right)$ steps
\Longrightarrow a quantum circuit for $U_{f}:|a\rangle\left|0^{\mathrm{n}}\right\rangle \mapsto|\mathrm{a}\rangle|\mathrm{f}(\mathrm{a})\rangle$ has the same complexity
\Longrightarrow we don't need to work in the oracle model since we can implement the function quantumly

Quantum circuit for factoring

same circuit as Simon's algorithm, with Hadamard \leftrightarrow QFT

- $\mathrm{q}=2^{\ell}$ such that $\mathrm{N}^{2}<\mathrm{q} \leq 2 \mathrm{~N}^{2}$
- Quantum Fourier Transform F_{q} requires $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$ gates
- black-box $\mathrm{U}_{\mathrm{f}}:|\mathrm{a}\rangle\left|0^{\mathrm{n}}\right\rangle \mapsto|\mathrm{a}\rangle|\mathrm{f}(\mathrm{a})\rangle$ requires $\mathrm{O}\left((\log \mathrm{N})^{2} \log \log \mathrm{~N} \log \log \log \mathrm{~N}\right)$ steps
\Longrightarrow this is the costly part of the algorithm!
- $\mathrm{n}=\lceil\log \mathrm{N}\rceil$ qubits

Quantum circuit for factoring

$$
\begin{aligned}
\left|0^{\ell}\right\rangle\left|0^{n}\right\rangle & \rightarrow \frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle\left|0^{n}\right\rangle \\
& \rightarrow \frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|f(a)\rangle
\end{aligned}
$$

Measure second register and get $\mathrm{f}(\mathrm{s})$ for $\mathrm{s}<\mathrm{r}$
\Longrightarrow first register collapses to

$$
|\mathrm{s}\rangle+|\mathrm{r}+\mathrm{s}\rangle+|2 \mathrm{r}+\mathrm{s}\rangle+|3 \mathrm{r}+\mathrm{s}\rangle+\cdots+|(\mathrm{m}-1) \mathrm{r}+\mathrm{s}\rangle
$$

with $\mathrm{m} \approx \mathrm{q} / \mathrm{r}$

Quantum circuit for factoring

QFT applied to $\frac{1}{\sqrt{\mathrm{~m}}} \sum_{\mathrm{j}=0}^{\mathrm{m}-1}|\mathrm{jr}+\mathrm{s}\rangle$ yields

$$
\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} \frac{1}{\sqrt{q}} \sum_{b=0}^{q-1} e^{2 \pi i(j r+s) b / q}|b\rangle=\frac{1}{\sqrt{m \mathrm{q}}} \sum_{b=0}^{q-1} e^{2 \pi i s b / q}\left(\sum_{j=0}^{m-1} e^{2 \pi i j r b / q}\right)|b\rangle
$$

what are the b with large amplitude?

$$
\sum_{j=0}^{m-1} e^{2 \pi i j r b / q}= \begin{cases}m & \text { if } e^{2 \pi i \frac{r b}{q}}=1 \\ \frac{1-e^{2 \pi i \frac{m b r}{q}}}{1-e^{2 \pi i \frac{r b}{q}}} & \text { if } e^{2 \pi i \frac{r b}{q}} \neq 1\end{cases}
$$

- yields with high probability a value b such that $r b / q$ is close to an integer c
- One can find efficiently (with continued fractions) the value of $\frac{c}{r}$
- c and r will be coprime with probability $\Omega(1 / \log \log \mathrm{r})$, which will occur after $\mathrm{O}(\log \log \mathrm{N})$ repetitions of the procedure
- in that case, one obtain r as the denominator by writing c / r in lowest terms.

Grover's algorithm

The search problem

The problem

Input: function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Find x such that $f(x)=1$ or output no solution if no such x .

Complexity

- randomized classical algorithm: $\Theta\left(2^{\mathrm{n}}\right)$ queries if single correct value
- Grover's algorithm: $\mathrm{O}\left(\sqrt{2^{\mathrm{n}}}\right)$ queries and $\mathrm{O}\left(\mathrm{n} \sqrt{2^{\mathrm{n}}}\right)$ other gates
\Longrightarrow quadratic speedup

Idea of the algorithm

Start with uniform superposition (via Hadamard):

$$
|\mathrm{U}\rangle=\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\}^{\mathrm{n}}}|\mathrm{x}\rangle=\sin \theta|\mathrm{G}\rangle+\cos \theta|\mathrm{B}\rangle
$$

- $\sin \theta=\sqrt{\mathrm{t} / 2^{\mathrm{n}}}$ and $\mathrm{t}=\#\{\mathrm{x} \mid \mathrm{f}(\mathrm{x})=1\}$
- good state $|\mathrm{G}\rangle=\frac{1}{\sqrt{\mathrm{t}}} \sum_{\mathrm{x} \text { s.t. } \mathrm{f}(\mathrm{x})=1}|\mathrm{x}\rangle$
- bad state $|\mathrm{B}\rangle=\frac{1}{\sqrt{2^{\mathrm{n}}-\mathrm{t}}} \sum_{\mathrm{x} \text { s.t. } \mathrm{f}(\mathrm{x})=0}|\mathrm{x}\rangle$

goal: rotate in the $\{|\mathrm{B}\rangle,|\mathrm{G}\rangle\}$ plane to reach $|\mathrm{G}\rangle$

How to implement rotation

perform two reflections:

- through $|\mathrm{B}\rangle$ by calling the oracle $\mathrm{O}_{\mathrm{f}, \pm}:|\mathrm{x}\rangle \mapsto(-1)^{\mathrm{f}(\mathrm{x})}|\mathrm{x}\rangle$
- through $|\mathrm{U}\rangle$ by $\mathrm{H}^{\otimes \mathrm{n}} \mathrm{RH}^{\otimes \mathrm{n}}=2|\mathrm{U}\rangle\langle\mathrm{U}|-\mathbb{1}$, where $\mathrm{R}:|\mathrm{x}\rangle \rightarrow(-1)^{\left[\mathrm{x} \neq 0^{\mathrm{n}}\right]}|\mathrm{x}\rangle$
define $\mathcal{G}=\mathrm{H}^{\otimes \mathrm{n}} \mathrm{RH}^{\otimes \mathrm{n}} \mathrm{O}_{\mathrm{f}, \pm} \Longrightarrow$ rotation of angle 2θ

Grover's algorithm

assuming we know the fraction of solutions $t / 2^{\mathrm{n}}=\sin ^{2} \theta \approx \theta^{2}$

1 start with $|\mathrm{U}\rangle=\mathrm{H}^{\otimes \mathrm{n}}|0\rangle$
2 repeat $\mathrm{k} \approx \frac{\pi / 2}{2 \theta}=\mathrm{O}\left(1 / \sqrt{\mathrm{t} / 2^{\mathrm{n}}}\right)$ times the rotation \mathcal{G} of angle 2θ
3 measure and check that the outcome is a solution

Recap

- quantum Fourier transform: exponential speedup compared to classical: $\log ^{2} \mathrm{~N}$ vs $\mathrm{N} \log \mathrm{N}$
- seems like cheating because input and output are encoded in quantum states, and not classically accessible
- yet, this is the main ingredient for Shor's algorithm
- more recently (2009): HHL algorithm solves linear equations $A x=b$ in $O(\log n)$ time (exponential speedup) if solution encoded as $|\mathrm{x}\rangle \propto \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}|\mathrm{i}\rangle$
- seems again like cheating, but useful for quantum machine learning algorithms
- to be continued...

next talks

Mazyar Mirrahimi on the challenges to build a quantum computer (error correction and fault-tolerance)

