Introduction to quantum computing

Anthony Leverrier, Inria Paris & Mazyar Mirrahimi, Inria Paris

IQUPS course 2018

Outline of the course

courses 1 – 2*: basics of quantum computing and standard algorithms (Anthony Leverrier)*

- May 29 (9:15 10:45): basics of quantum computing: qubits, measurements, circuit model, query complexity model, Simon's algorithm
- ▶ June 5 (11:00 12:30): quantum Fourier transform, Shor's algorithm, Grover's algorithm

courses 3 – 4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)

- ▶ June 18: basics of quantum error correction (discretization of errors, Shor an Steane codes) and fault-tolerance
- ▶ June 25: towards experimental implementation: surface codes and continuous-variable codes

Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf, available online.

Quantum Computing: Lecture Notes by Ronald de Wolf http://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Other ressources include:

- ▶ the classic "Quantum computation and quantum information" by Nielsen & Chuang
- Lecture notes by John Preskill http://www.theory.caltech.edu/people/preskill/ph229/

The end of Moore's law

Intel Delays Mass	Production	of 10	nm	CPUs	to
2019					

by Anton Shilov on April 27, 2018 12:20 PM EST

https://www.anandtech.com/show/12693/

intel-delays-mass-production-of-10-nm-cpus-to-2019

	Intel First Production	
1999	180 nm	
2001	130 nm	
2003	90 nm	
2005	65 nm	
2007	45 nm	
2009	32 nm	
2011	22 nm	
2014	14 nm	
2016	10 nm	
2017	10 nm	
2018	10 nm?	
2019	10 nm!	

Why study quantum computing?

quantum computation

- investigation of the computational power of computer based on quantum mechanical principles
- ▶ main objective: find algorithms with speedup compared to classical algos

Motivations

- ▶ *miniaturization* reaches levels where quantum effects become non-negligible. One can either try to suppress them or to exploit them.
- ▶ *speedups* for computation, but also applications in cryptography
- objective is to understand the power of the strongest-possible computing devices allowed by *Nature*

Genesis of quantum computing

Feynman 1981

"Can quantum systems be probabilistically simulated by a classical computer?

- $[\dots]$ The answer is almost certainly, No!"
- \implies use quantum systems to simulate quantum systems!
- \implies birth of quantum simulation

Deutsch 1985

- quantum Turing machine
- existence of a universal machine
- \implies birth of quantum computing

Bernstein, Vazirani 1993

- ▶ efficient quantum Turing machine (complexity class BQP)
- ▶ Bernstein-Vazirani problem: $f : \{0, 1\}^n \to \{0, 1\}$ such that $f(x) = a \cdot x$ Find a. \implies ok with 1 quantum query vs n classically

The first algorithms

Simon, Shor 1994

exponential speedups for

- ▶ period finding
- factoring!! very surprising \implies sparked a lot of interest in the field
- ▶ discrete logarithm
- \implies exploits Quantum Fourier Transform
- \implies consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

- ▶ search an n-item list with $O(\sqrt{n})$ queries
- ▶ lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement

Basics of quantum computation

States, evolution, measurement

▶ in this course, we restrict ourselves to *pure* n-*qubit states*: $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$

$$|\psi\rangle = \alpha_{0\cdots00}|0\cdots00\rangle + \alpha_{0\cdots01}|0\cdots01\rangle\cdots+\alpha_{1\cdots11}|1\cdots11\rangle$$

with $\sum |\alpha_{\vec{i}}|^2 = 1$ (normalization) and $|i_1 i_2 \cdots i_n\rangle := |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle$

in practice, one needs to deal with *decoherence*, and therefore *mixed states* but quantum fault-tolerance techniques can be applied to deal with such issues (threshold theorem): see Mazyar's course

► the state is *evolved unitarily*, possibly by applying the unitary U (such that UU[†] = 1) also on ancilla qubits initialized in |0)^{⊗m}:

$$|\psi\rangle \mapsto \mathrm{U}|\psi\rangle|0\rangle^{\otimes\mathrm{m}}$$

▶ in this course, states are *measured in the computational (standard) basis*: the measurement returns the string $\vec{i} \in \{0, 1\}^n$ with probability

$$\mathbb{P}(\vec{i}) = |\langle \vec{i} | \psi \rangle|^2 = |\alpha_{\vec{i}}|^2$$

A. Leverrier

Elementary gates

gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to classical logic gates AND, OR and NOT

single-qubit gates

- ► bitflip gate X: $|0\rangle \leftrightarrow |1\rangle$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- ▶ phase-flip gate Z: $|0\rangle \mapsto |0\rangle$, $|1\rangle \mapsto -|1\rangle$

• phase-flip gate $R_{\phi}: |0\rangle \mapsto |0\rangle$, $|1\rangle \mapsto e^{i\phi}|1\rangle$

► Hadamard gate: $|0\rangle \leftrightarrow |+\rangle$, $|1\rangle \leftrightarrow |-\rangle$ $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$

$$|\pm\rangle := \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$$

 $\mathbf{Z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $\mathbf{R}_{\phi} = \begin{pmatrix} 1 & 0\\ 0 & \mathrm{e}^{\mathrm{i}\phi} \end{pmatrix} \qquad \mathbf{T} := \mathbf{R}_{\pi/4}$

Elementary gates

two-qubit gates

▶ controlled-not (CNOT): flips the second input qubit if the first one is |1⟩, and does nothing if the first qubit is |0⟩

$$CNOT|0\rangle|b\rangle = |0\rangle|b\rangle$$
$$CNOT|1\rangle|b\rangle = |1\rangle|1-b\rangle$$

$$\text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

▶ controlled-U (for single-qubit unitary U):

$$\begin{pmatrix} \mathbb{1}_2 & 0\\ 0 & U \end{pmatrix}$$

Models of quantum computing

Models of quantum computing

There are different models to describe how a quantum computer can apply computational steps to its registers of qubits.

- ▶ quantum Turing machine (Deutsch 1985: states, tape, transition function...)
- *circuit model:* this course
- ► adiabatic quantum computing:
 - ▶ encode your problem as a Hamiltonian H and the solution as a ground state
 - \blacktriangleright start with a ground state of an easy Hamiltonian ${\rm H}_0$
 - ► slowly evolve the system by applying $(1 \alpha(t))H_0 + \alpha(t)H$ for $\alpha(t_{init}) = 0$, $\alpha(t_{fin}) = 1$
 - ▶ provided that the evolution is sufficiently slow, one remains in the ground state
- ► *measurement-based quantum computing* (Raussendorf, Briegel 2002):
 - \blacktriangleright start with a generic highly entangled state: a *cluster state*
 - measure each qubit one by one and update following measurement angles as a function of previous measurement results

Theorem

These models are equivalent: they can simulate each other in polynomial time

A. Leverrier

The circuit model

We are mostly interested in classical problems where the input is some n-bit string $x \in \{0, 1\}^n$, and we want an output $y \in \{0, 1\}^m$, possibly with m = 1.

- input state: $|\vec{x}\rangle \otimes |0\rangle^{\otimes n'}$ (input + ancilla)
- ▶ unitary operation: U described as a quantum network of elementary gates
- output: measure the final (n + n')-qubit state in the computational basis

Note that the answer is generally probabilistic. Sometimes we repeat the process a few times and take a majority vote.

Question

can any unitary operation U acting on N qubits be decomposed into a circuit of elementary gates acting on 1 or 2 qubits?

- \implies universal gate set: reduces to infinitely-many elementary gates
- \implies Kitaev-Solovay theorem: approximate unitary with finite gate set

Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using

- arbitrary single qubit gates
- ▶ the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:

- CNOT, Hadamard H, T-gate $T = R_{\pi/4}$
- ▶ Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2-qubit unitary can be approximated up to error ε using $polylog(1/\varepsilon)$ gates from the set.

Quantum parallelism

The main motivation for quantum computation: "perform many computations in superposition".

Lemma

Suppose we have a classical algorithm that computes some function $f : \{0, 1\}^n \to \{0, 1\}^m$. Then we can build a quantum circuit U_f consisting only of Toffoli gates that maps

$$\mathsf{J}_{\mathrm{f}} \quad : \quad |\mathbf{x}\rangle |0\rangle \mapsto |\mathbf{x}\rangle |\mathbf{f}(\mathbf{x})\rangle.$$

Not
$$|x\rangle \mapsto |f(x)\rangle \dots$$
 not unitary in general!

Consequence:

$$\begin{split} H^{\otimes n}|0\rangle^{\otimes n} &= \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} |x\rangle\\ U\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} |x\rangle|0\rangle\right) &= \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} |x\rangle|f(x)\rangle \end{split}$$

A. Leverrier

Quantum parallelism

The main motivation for quantum computation: "perform many computations in superposition".

Lemma

Suppose we have a classical algorithm that computes some function $f : \{0, 1\}^n \to \{0, 1\}^m$. Then we can build a quantum circuit U_f consisting only of Toffoli gates that maps

 $U_f \quad : \quad |x\rangle |0\rangle \mapsto |x\rangle |f(x)\rangle.$

Caution!

- One applies U_f just once, but the final state contains f(x) for all 2^n input values.
- ► However, measuring the output state in the computational basis only yields a single (random) couple (x, f(x)).
- ▶ *Holevo theorem:* one cannot extract more than n bits of information from n qubits

The early quantum algorithms

Query complexity model

Standard circuit model: input of computation is encoded in the input state; quantum circuit; measurement in computational basis ... *how many gates?*

Query complexity model: the input (e.g. a function) is accessed as a black box

N-bit input $\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_N) \in \{0, 1\}^N$

- Usually, $N = 2^n$: bit x_i can be addressed with n-bit string i.
- Example: x is a Boolean function $f : \{0, 1\}^n \to \{0, 1\}, f(i) \equiv x_i$
- ▶ input = N-bit memory (Random Access Memory) which can be accessed as a black-box at any point we want.
- modeled as a quantum unitary on n + 1 qubits (n-bit address and single-bit target)

 $O_x : |i, 0\rangle \mapsto |i, x_i\rangle$

$$O_x: |i,b\rangle \mapsto |i,x_i \oplus b\rangle$$

 \blacktriangleright alternative phase-oracle: $O_{x,\pm}:|i\rangle\mapsto (-1)^{x_i}|i\rangle$

Some early algorithms

provide speedups in query complexity model, not in the standard circuit model

Deutsch-Jozsa (1992)

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ either

- \blacktriangleright constant: all x_i are equal
- \blacktriangleright balanced: half of x_i are 0, half are 1

Find which one.

Bernstein-Vazirani (1993)

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ such that $\exists a \in \{0, 1\}^n$ with $x_i = (i \cdot a) \mod 2$. Find a.

Simon (1994)

For $N = 2^n$, we are given $x = (x_1, \cdots, x_N)$ with $x_i \in \{0, 1\}^n$ with the property that $\exists s \neq 0 \in \{0, 1\}^n$ such that $x_i = x_j \iff (i = j \text{ or } i = j \oplus s)$. Find s.

A. Leverrier

Deutsch-Josza

the problem

- For $N = 2^n$, we are given $x \in \{0, 1\}^N$ either
 - \blacktriangleright constant: all x_i are equal
 - \blacktriangleright balanced: half of x_i are 0, half are 1

Find which one.

complexity

- ▶ classical deterministic (no errors): at least N/2 + 1 queries needed
- ▶ classical if errors are allowed: constant number of queries
- quantum: single query!

 \implies separation quantum vs exact classical

Deutsch-Josza

$$\begin{split} |0^{n}\rangle &\longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{i \in \{0,1\}^{n}} |i\rangle \longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{i \in \{0,1\}^{n}} (-1)^{x_{i}} |i\rangle \\ &\longrightarrow \frac{1}{\sqrt{2^{n}}} \sum_{i \in \{0,1\}^{n}} (-1)^{x_{i}} \sum_{j \in \{0,1\}^{n}} (-1)^{i \cdot j} |j\rangle \end{split}$$

Amplitude of $|0^n\rangle$ state:

$$\frac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}(-1)^{x_i} = \left\{\begin{array}{ll} 1 & \text{if } x_i=0 \quad \forall i\\ -1 & \text{if } x_i=1 \quad \forall i\\ 0 & \text{if } x \text{ is balanced} \end{array}\right.$$

Yields $|0^n\rangle$ iff x is constant: 1 query and O(n) operations

A. Leverrier

Bernstein-Vazirani

the problem: linear function, find coefficients

For $N=2^n,$ we are given $x\in\{0,1\}^N$ such that $\exists a\in\{0,1\}^n$ with $x_i=(i\cdot a)\mod 2.$ Find a.

complexity

- ▶ randomized classical, small errors allowed: needs at least n queries (each query gives at most 1 bit of info)
- ▶ quantum: single query!

same algorithm as Deusch-Josza: $(-1)^{x_i} = (-1)^{(i \cdot a) \mod 2} = (-1)^{i \cdot a}$ state after the query:

$$\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} |i\rangle = \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{i \cdot a} |i\rangle$$

 $\mathbf{H}=\mathbf{H}^{-1}\implies |\mathbf{a}\rangle$

A. Leverrier

Simon's algorithm

Exponential speedup for query complexity (we count queries, not ordinary operations)

hidden period for 2-to-1 function

For $N=2^n,$ we are given $x=(x_1,\cdots,x_N)$ with $x_i\in\{0,1\}^n$ with the property that $\exists s\neq 0\in\{0,1\}^n$ such that

$$x_i = x_j \iff (i = j \quad \mathrm{or} \quad i = j \oplus s).$$

Find s.

Note that x_i is an n-bit string, not a single bit.

complexity

- ▶ randomized classical algorithm in $O(\sqrt{2^n})$ queries with birthday paradox
- ▶ this is essentially optimal for classical algorithms
- ▶ quantum (Simon's algorithm): O(n) queries

 \implies exponential separation *quantum* vs *randomized classical*

Simon's algorithm

$$|0^n\rangle|0^n\rangle \longrightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}n} |i\rangle|0^n\rangle \longrightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}n} |i\rangle|x_i\rangle$$

Measure 2nd n-bit register: yields $x_i \in \{0,1\}^n$, collapses the first register to superposition of 2 indices compatible with x_i

$$rac{1}{\sqrt{2}}(|\mathrm{i}
angle+|\mathrm{i}\oplus\mathrm{s}
angle)|\mathrm{x}_{\mathrm{i}}
angle$$

Hadamard to first n qubits:

$$\frac{1}{\sqrt{2^{n+1}}} \left(\sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} |j\rangle + \sum_{j \in \{0,1\}^n} (-1)^{(i \oplus s) \cdot j} |j\rangle \right) = \frac{1}{\sqrt{2^{n+1}}} \sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} (1 + (-1)^{s \cdot j}) |j\rangle$$

A. Leverrier

Simon's algorithm

Measure state

$$\frac{1}{\sqrt{2^{n+1}}}\sum_{j\in\{0,1\}^n}(-1)^{i\cdot j}(1+(-1)^{s\cdot j})|j\rangle$$

- ▶ $|j\rangle$ has nonzero amplitude iff $s \cdot j = 0 \mod 2$.
- The measurement outcome is uniformly drawn from $\{j \mid s \cdot j = 0 \mod 2\}$.
- $\blacktriangleright \implies$ linear equation giving information about s
- ▶ repeat until we get n 1 independent linear equations
- ▶ solutions are 0 and s via Gaussian elimination (classical circuit of size $O(n^3)$)

 \implies exponential speedup in the query complexity model! Can we get it in the standard model as well?

Recap

- quantum computers can exploit quantum parallelism, but cannot really do an exponential number of computations in parallel
- one single output!
- ▶ different models of quantum computing: circuit, measurement-based, adiabatic computing, all equivalent (up to polynomials)

Today: "speedup" in query complexity model

- black-box access to a function
- ▶ provable, exponential improvement, but not in a real situation

Next week: speedup in standard gate complexity model

- ► Shor's algorithm for factoring
- ▶ Grover's algorithm for search