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Outline of the course

courses 1 – 2: basics of quantum computing and standard algorithms (Anthony Leverrier)

I May 29 (9:15 - 10:45): basics of quantum computing: qubits, measurements, circuit
model, query complexity model, Simon’s algorithm

I June 5 (11:00 – 12:30): quantum Fourier transform, Shor’s algorithm, Grover’s
algorithm

courses 3 – 4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)

I June 18: basics of quantum error correction (discretization of errors, Shor an Steane
codes) and fault-tolerance

I June 25: towards experimental implementation: surface codes and continuous-variable
codes
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Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf,
available online.

I Quantum Computing: Lecture Notes by Ronald de Wolf
http://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Other ressources include:

I the classic “Quantum computation and quantum information” by Nielsen & Chuang
I Lecture notes by John Preskill

http://www.theory.caltech.edu/people/preskill/ph229/
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The end of Moore’s law

https://www.anandtech.com/show/12693/

intel-delays-mass-production-of-10-nm-cpus-to-2019

A. Leverrier Quantum computing IQUPS 2018 4 / 27

https://www.anandtech.com/show/12693/intel-delays-mass-production-of-10-nm-cpus-to-2019
https://www.anandtech.com/show/12693/intel-delays-mass-production-of-10-nm-cpus-to-2019


Why study quantum computing?

quantum computation

I investigation of the computational power of computer based on quantum mechanical
principles

I main objective: find algorithms with speedup compared to classical algos

Motivations

I miniaturization reaches levels where quantum effects become non-negligible. One can
either try to suppress them or to exploit them.

I speedups for computation, but also applications in cryptography

I objective is to understand the power of the strongest-possible computing devices
allowed by Nature
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Genesis of quantum computing
Feynman 1981

“Can quantum systems be probabilistically simulated by a classical computer?
[. . . ] The answer is almost certainly, No!"
=⇒ use quantum systems to simulate quantum systems!
=⇒ birth of quantum simulation

Deutsch 1985

I quantum Turing machine

I existence of a universal machine

=⇒ birth of quantum computing

Bernstein, Vazirani 1993

I efficient quantum Turing machine (complexity class BQP)
I Bernstein-Vazirani problem: f : {0, 1}n → {0, 1} such that f(x) = a · x

Find a. =⇒ ok with 1 quantum query vs n classically

A. Leverrier Quantum computing IQUPS 2018 6 / 27



The first algorithms

Simon, Shor 1994
exponential speedups for

I period finding

I factoring!! very surprising =⇒ sparked a lot of interest in the field

I discrete logarithm

=⇒ exploits Quantum Fourier Transform
=⇒ consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

I search an n-item list with O(
√
n) queries

I lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement
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Basics of quantum computation
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States, evolution, measurement
I in this course, we restrict ourselves to pure n-qubit states: |ψ〉 ∈ (C2)⊗n

|ψ〉 = α0···00|0 · · · 00〉+ α0···01|0 · · · 01〉 · · ·+ α1···11|1 · · · 11〉

with ∑ |α~i|2 = 1 (normalization) and |i1i2 · · · in〉 := |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉

in practice, one needs to deal with decoherence, and therefore mixed states but quantum
fault-tolerance techniques can be applied to deal with such issues (threshold theorem):
see Mazyar’s course

I the state is evolved unitarily, possibly by applying the unitary U (such that UU† = 1)
also on ancilla qubits initialized in |0〉⊗m:

|ψ〉 7→ U|ψ〉|0〉⊗m

I in this course, states are measured in the computational (standard) basis: the
measurement returns the string~i ∈ {0, 1}n with probability

P(~i) = |〈~i|ψ〉|2 = |α~i|
2
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Elementary gates
gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to
classical logic gates AND, OR and NOT

single-qubit gates

I bitflip gate X: |0〉 ↔ |1〉 X =

(
0 1
1 0

)
I phase-flip gate Z: |0〉 7→ |0〉, |1〉 7→ −|1〉 Z =

(
1 0
0 −1

)
I phase-flip gate Rφ: |0〉 7→ |0〉, |1〉 7→ eiφ|1〉 Rφ =

(
1 0
0 eiφ

)
T := Rπ/4

I Hadamard gate: |0〉 ↔ |+〉, |1〉 ↔ |−〉 H = 1√
2

(
1 1
1 −1

)

|±〉 :=
1√
2
(|0〉 ± |1〉)
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Elementary gates
two-qubit gates

I controlled-not (CNOT): flips the second input qubit if the first one is |1〉, and does
nothing if the first qubit is |0〉

CNOT|0〉|b〉 = |0〉|b〉
CNOT|1〉|b〉 = |1〉|1− b〉

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I controlled-U (for single-qubit unitary U):(

12 0
0 U

)
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Models of quantum computing
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Models of quantum computing
There are different models to describe how a quantum computer can apply computational
steps to its registers of qubits.

I quantum Turing machine (Deutsch 1985: states, tape, transition function...)
I circuit model: this course
I adiabatic quantum computing:

I encode your problem as a Hamiltonian H and the solution as a ground state
I start with a ground state of an easy Hamiltonian H0
I slowly evolve the system by applying (1− α(t))H0 + α(t)H for α(tinit) = 0, α(tfin) = 1
I provided that the evolution is sufficiently slow, one remains in the ground state

I measurement-based quantum computing (Raussendorf, Briegel 2002):
I start with a generic highly entangled state: a cluster state
I measure each qubit one by one and update following measurement angles as a function

of previous measurement results

Theorem

These models are equivalent: they can simulate each other in polynomial time
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The circuit model

We are mostly interested in classical problems where the input is some n-bit string
x ∈ {0, 1}n, and we want an output y ∈ {0, 1}m, possibly with m = 1.

I input state: |~x〉 ⊗ |0〉⊗n′ (input + ancilla)
I unitary operation: U described as a quantum network of elementary gates
I output: measure the final (n+ n′)-qubit state in the computational basis

Note that the answer is generally probabilistic. Sometimes we repeat the process a few
times and take a majority vote.

Question

can any unitary operation U acting on N qubits be decomposed into a circuit of
elementary gates acting on 1 or 2 qubits?
=⇒ universal gate set: reduces to infinitely-many elementary gates
=⇒ Kitaev-Solovay theorem: approximate unitary with finite gate set
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Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using
I arbitrary single qubit gates
I the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite
precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:
I CNOT, Hadamard H, T-gate T = Rπ/4

I Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2-qubit unitary can be approximated up to error ε using
polylog(1/ε) gates from the set.
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Quantum parallelism
The main motivation for quantum computation: “perform many computations in
superposition”.

Lemma

Suppose we have a classical algorithm that computes some function f : {0, 1}n → {0, 1}m.
Then we can build a quantum circuit Uf consisting only of Toffoli gates that maps

Uf : |x〉|0〉 7→ |x〉|f(x)〉.

Not |x〉 7→ |f(x)〉 . . . not unitary in general!

Consequence:
H⊗n|0〉⊗n =

1√
2n ∑

x∈{0,1}n
|x〉

U

(
1√
2n ∑

x∈{0,1}n
|x〉|0〉

)
=

1√
2n ∑

x∈{0,1}n
|x〉|f(x)〉
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Quantum parallelism

The main motivation for quantum computation: “perform many computations in
superposition”.

Lemma

Suppose we have a classical algorithm that computes some function f : {0, 1}n → {0, 1}m.
Then we can build a quantum circuit Uf consisting only of Toffoli gates that maps

Uf : |x〉|0〉 7→ |x〉|f(x)〉.

Caution!

I One applies Uf just once, but the final state contains f(x) for all 2n input values.
I However, measuring the output state in the computational basis only yields a single

(random) couple (x, f(x)).
I Holevo theorem: one cannot extract more than n bits of information from n qubits
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The early quantum algorithms
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Query complexity model
Standard circuit model: input of computation is encoded in the input state; quantum
circuit; measurement in computational basis . . . how many gates?
Query complexity model: the input (e.g. a function) is accessed as a black box

N-bit input x = (x1, · · · , xN) ∈ {0, 1}N

I Usually, N = 2n: bit xi can be addressed with n-bit string i.
I Example: x is a Boolean function f : {0, 1}n → {0, 1}, f(i) ≡ xi

I input = N-bit memory (Random Access Memory) which can be accessed as a
black-box at any point we want.

I modeled as a quantum unitary on n+ 1 qubits (n-bit address and single-bit target)

Ox : |i, 0〉 7→ |i, xi〉

Ox : |i, b〉 7→ |i, xi ⊕ b〉
I alternative phase-oracle: Ox,± : |i〉 7→ (−1)xi |i〉
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Some early algorithms
provide speedups in query complexity model, not in the standard circuit model

Deutsch-Jozsa (1992)

For N = 2n, we are given x ∈ {0, 1}N either
I constant: all xi are equal
I balanced: half of xi are 0, half are 1

Find which one.

Bernstein-Vazirani (1993)

For N = 2n, we are given x ∈ {0, 1}N such that ∃a ∈ {0, 1}n with xi = (i · a) mod 2.
Find a.

Simon (1994)

For N = 2n, we are given x = (x1, · · · , xN) with xi ∈ {0, 1}n with the property that
∃s 6= 0 ∈ {0, 1}n such that xi = xj ⇐⇒ (i = j or i = j⊕ s).
Find s.
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Deutsch-Josza

the problem

For N = 2n, we are given x ∈ {0, 1}N either
I constant: all xi are equal
I balanced: half of xi are 0, half are 1

Find which one.

complexity

I classical deterministic (no errors): at least N/2+ 1 queries needed
I classical if errors are allowed: constant number of queries
I quantum: single query!

=⇒ separation quantum vs exact classical
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Deutsch-Josza

|0〉 H

Ux,±

H

|0〉 H H

|0〉 H H

|0n〉 −→ 1√
2n ∑

i∈{0,1}n
|i〉 −→ 1√

2n ∑
i∈{0,1}n

(−1)xi |i〉

−→ 1√
2n ∑

i∈{0,1}n
(−1)xi ∑

j∈{0,1}n
(−1)i·j|j〉

Amplitude of |0n〉 state:

1√
2n ∑

i∈{0,1}n
(−1)xi =

 1 if xi = 0 ∀i
-1 if xi = 1 ∀i
0 if x is balanced

Yields |0n〉 iff x is constant: 1 query and O(n) operations
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Bernstein-Vazirani
the problem: linear function, find coefficients

For N = 2n, we are given x ∈ {0, 1}N such that ∃a ∈ {0, 1}n with xi = (i · a) mod 2.
Find a.

complexity

I randomized classical, small errors allowed: needs at least n queries (each query gives
at most 1 bit of info)

I quantum: single query!

same algorithm as Deusch-Josza: (−1)xi = (−1)(i·a) mod 2 = (−1)i·a
state after the query:

1√
2n ∑

i∈{0,1}n
(−1)xi |i〉 = 1√

2n ∑
i∈{0,1}n

(−1)i·a|i〉

H = H−1 =⇒ |a〉
A. Leverrier Quantum computing IQUPS 2018 23 / 27



Simon’s algorithm
Exponential speedup for query complexity (we count queries, not ordinary operations)

hidden period for 2-to-1 function

For N = 2n, we are given x = (x1, · · · , xN) with xi ∈ {0, 1}n with the property that
∃s 6= 0 ∈ {0, 1}n such that

xi = xj ⇐⇒ (i = j or i = j⊕ s).

Find s.

Note that xi is an n-bit string, not a single bit.

complexity

I randomized classical algorithm in O(
√
2n) queries with birthday paradox

I this is essentially optimal for classical algorithms
I quantum (Simon’s algorithm): O(n) queries

=⇒ exponential separation quantum vs randomized classical
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Simon’s algorithm

|0〉 /n H⊗n

Ux
H⊗n

|0〉 /n

|0n〉|0n〉 −→ 1√
2n ∑

i∈{0,1}n
|i〉|0n〉 −→ 1√

2n ∑
i∈{0,1}n

|i〉|xi〉

Measure 2nd n-bit register: yields xi ∈ {0, 1}n, collapses the first register to superposition of 2
indices compatible with xi

1√
2
(|i〉+ |i⊕ s〉)|xi〉

Hadamard to first n qubits:

1√
2n+1

 ∑
j∈{0,1}n

(−1)i·j|j〉+ ∑
j∈{0,1}n

(−1)(i⊕s)·j|j〉

 =
1√
2n+1 ∑

j∈{0,1}n
(−1)i·j(1+ (−1)s·j)|j〉

A. Leverrier Quantum computing IQUPS 2018 25 / 27



Simon’s algorithm

Measure state

1√
2n+1 ∑

j∈{0,1}n
(−1)i·j(1+ (−1)s·j)|j〉

I |j〉 has nonzero amplitude iff s · j = 0 mod 2.

I The measurement outcome is uniformly drawn from {j | s · j = 0 mod 2}.
I =⇒ linear equation giving information about s

I repeat until we get n− 1 independent linear equations

I solutions are 0 and s via Gaussian elimination (classical circuit of size O(n3) )

=⇒ exponential speedup in the query complexity model! Can we get it in the standard
model as well?
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Recap
I quantum computers can exploit quantum parallelism, but cannot really do an

exponential number of computations in parallel
I one single output!
I different models of quantum computing: circuit, measurement-based, adiabatic

computing, all equivalent (up to polynomials)

Today: “speedup” in query complexity model

I black-box access to a function
I provable, exponential improvement, but not in a real situation

Next week: speedup in standard gate complexity model

I Shor’s algorithm for factoring
I Grover’s algorithm for search
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