Introduction to quantum computing

Anthony Leverrier, Inria Paris
\&
Mazyar Mirrahimi, Inria Paris

IQUPS course 2018

Outline of the course

courses 1 - 2: basics of quantum computing and standard algorithms (Anthony Leverrier)

- May 29 (9:15-10:45): basics of quantum computing: qubits, measurements, circuit model, query complexity model, Simon's algorithm
- June 5 (11:00-12:30): quantum Fourier transform, Shor's algorithm, Grover's algorithm
courses 3-4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)
- June 18: basics of quantum error correction (discretization of errors, Shor an Steane codes) and fault-tolerance
- June 25: towards experimental implementation: surface codes and continuous-variable codes

Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf, available online.

- Quantum Computing: Lecture Notes by Ronald de Wolf http://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Other ressources include:

- the classic "Quantum computation and quantum information" by Nielsen \& Chuang
- Lecture notes by John Preskill http://www.theory.caltech.edu/people/preskill/ph229/

The end of Moore's law

Intel Delays Mass Production of 10 nm CPUs to 2019
by Anton Shilov on Aprilat, 2018 12:20 FM EST
https://www. anandtech.com/show/12693/
intel-delays-mass-production-of-10-nm-cpus-to-2019

	Intel				
	First Production	$	$	1999	130 nm
:---	:---				
2001	90 nm				
2003	65 nm				
2005	45 nm				
2007	32 nm				
2009	22 nm				
2011	14 nm				
2014	10 nm				
2016	10 nm				
2017	$10 \mathrm{~nm} ?$				
2018	$10 \mathrm{~nm}!$				
2019					

Why study quantum computing?

quantum computation

- investigation of the computational power of computer based on quantum mechanical principles
- main objective: find algorithms with speedup compared to classical algos

Motivations

- miniaturization reaches levels where quantum effects become non-negligible. One can either try to suppress them or to exploit them.
- speedups for computation, but also applications in cryptography
- objective is to understand the power of the strongest-possible computing devices allowed by Nature

Genesis of quantum computing

Feynman 1981

"Can quantum systems be probabilistically simulated by a classical computer?
[...] The answer is almost certainly, No!"
\Longrightarrow use quantum systems to simulate quantum systems!
\Longrightarrow birth of quantum simulation

Deutsch 1985

- quantum Turing machine
- existence of a universal machine
\Longrightarrow birth of quantum computing

Bernstein, Vazirani 1993

- efficient quantum Turing machine (complexity class BQP)
- Bernstein-Vazirani problem: $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{a} \cdot \mathrm{x}$

Find a. $\quad \Longrightarrow$ ok with 1 quantum query vs n classically

The first algorithms

Simon, Shor 1994

exponential speedups for

- period finding
- factoring!! very surprising \Longrightarrow sparked a lot of interest in the field
- discrete logarithm

\Longrightarrow exploits Quantum Fourier Transform
\Longrightarrow consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

- search an n-item list with $\mathrm{O}(\sqrt{\mathrm{n}})$ queries
- lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement

Basics of quantum computation

States, evolution, measurement

- in this course, we restrict ourselves to pure n-qubit states: $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\begin{aligned}
|\psi\rangle & =\alpha_{0 \cdots 00}|0 \cdots 00\rangle+\alpha_{0 \cdots 01}|0 \cdots 01\rangle \cdots+\alpha_{1 \cdots 11}|1 \cdots 11\rangle \\
\text { with } \quad \sum\left|\alpha_{\mathfrak{i}}\right|^{2} & =1 \quad \text { (normalization) } \quad \text { and } \quad\left|\mathrm{i}_{1} \mathrm{i}_{2} \cdots \mathrm{i}_{\mathrm{n}}\right\rangle:=\left|\mathrm{i}_{1}\right\rangle \otimes\left|\mathrm{i}_{2}\right\rangle \otimes \cdots \otimes\left|\mathrm{i}_{\mathrm{n}}\right\rangle
\end{aligned}
$$

in practice, one needs to deal with decoherence, and therefore mixed states but quantum fault-tolerance techniques can be applied to deal with such issues (threshold theorem): see Mazyar's course

- the state is evolved unitarily, possibly by applying the unitary U (such that $\mathrm{UU}^{\dagger}=\mathbb{1}$) also on ancilla qubits initialized in $|0\rangle^{\otimes \mathrm{m}}$:

$$
|\psi\rangle \mapsto \mathrm{U}|\psi\rangle|0\rangle^{\otimes \mathrm{m}}
$$

- in this course, states are measured in the computational (standard) basis: the measurement returns the string $\vec{i} \in\{0,1\}^{n}$ with probability

$$
\mathbb{P}(\overrightarrow{\mathrm{i}})=|\langle\overrightarrow{\mathrm{i}} \mid \psi\rangle|^{2}=\left|\alpha_{\overrightarrow{\mathrm{i}}}\right|^{2}
$$

Elementary gates

gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to classical logic gates AND, OR and NOT

single-qubit gates

- bitflip gate X: $|0\rangle \leftrightarrow|1\rangle$

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- phase-flip gate $\mathrm{Z}:|0\rangle \mapsto|0\rangle, \quad|1\rangle \mapsto-|1\rangle$

$$
\mathrm{Z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- phase-flip gate $\mathrm{R}_{\phi}:|0\rangle \mapsto|0\rangle, \quad|1\rangle \mapsto \mathrm{e}^{\mathrm{i} \phi}|1\rangle$

$$
\mathrm{R}_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{\mathrm{i} \phi}
\end{array}\right) \quad \mathrm{T}:=\mathrm{R}_{\pi / 4}
$$

- Hadamard gate: $|0\rangle \leftrightarrow|+\rangle$,

$$
|1\rangle \leftrightarrow|-\rangle \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Elementary gates

two-qubit gates

- controlled-not (CNOT): flips the second input qubit if the first one is $|1\rangle$, and does nothing if the first qubit is $|0\rangle$

$$
\begin{aligned}
& \mathrm{CNOT}|0\rangle|\mathrm{b}\rangle=|0\rangle|\mathrm{b}\rangle \\
& \mathrm{CNOT}|1\rangle|\mathrm{b}\rangle=|1\rangle|1-\mathrm{b}\rangle \\
& \mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

- controlled-U (for single-qubit unitary U):

$$
\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & \mathrm{U}
\end{array}\right)
$$

Models of quantum computing

Models of quantum computing

There are different models to describe how a quantum computer can apply computational steps to its registers of qubits.

- quantum Turing machine (Deutsch 1985: states, tape, transition function...)
- circuit model: this course
- adiabatic quantum computing:
- encode your problem as a Hamiltonian H and the solution as a ground state
- start with a ground state of an easy Hamiltonian H_{0}
- slowly evolve the system by applying $(1-\alpha(\mathrm{t})) \mathrm{H}_{0}+\alpha(\mathrm{t}) \mathrm{H}$ for $\alpha\left(\mathrm{t}_{\text {init }}\right)=0, \alpha\left(\mathrm{t}_{\text {fin }}\right)=1$
- provided that the evolution is sufficiently slow, one remains in the ground state
- measurement-based quantum computing (Raussendorf, Briegel 2002):
- start with a generic highly entangled state: a cluster state
- measure each qubit one by one and update following measurement angles as a function of previous measurement results

Theorem

These models are equivalent: they can simulate each other in polynomial time

The circuit model

We are mostly interested in classical problems where the input is some n-bit string $\mathrm{x} \in\{0,1\}^{\mathrm{n}}$, and we want an output $\mathrm{y} \in\{0,1\}^{\mathrm{m}}$, possibly with $\mathrm{m}=1$.

- input state: $|\overrightarrow{\mathrm{x}}\rangle \otimes|0\rangle^{\otimes \mathrm{n}^{\prime}}$ (input + ancilla)
- unitary operation: U described as a quantum network of elementary gates
- output: measure the final $\left(\mathrm{n}+\mathrm{n}^{\prime}\right)$-qubit state in the computational basis

Note that the answer is generally probabilistic. Sometimes we repeat the process a few times and take a majority vote.

Question

can any unitary operation U acting on N qubits be decomposed into a circuit of elementary gates acting on 1 or 2 qubits?
\Longrightarrow universal gate set: reduces to infinitely-many elementary gates
\Longrightarrow Kitaev-Solovay theorem: approximate unitary with finite gate set

Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using

- arbitrary single qubit gates
- the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:

- CNOT, Hadamard H, T-gate $T=R_{\pi / 4}$
- Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2 -qubit unitary can be approximated up to error ε using polylog $(1 / \varepsilon)$ gates from the set.

Quantum parallelism

The main motivation for quantum computation: "perform many computations in superposition".

Lemma

Suppose we have a classical algorithm that computes some function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{m}}$. Then we can build a quantum circuit U_{f} consisting only of Toffoli gates that maps

$$
\mathrm{U}_{\mathrm{f}} \quad: \quad|\mathrm{x}\rangle|0\rangle \mapsto|\mathrm{x}\rangle|\mathrm{f}(\mathrm{x})\rangle .
$$

Not $|\mathrm{x}\rangle \mapsto|\mathrm{f}(\mathrm{x})\rangle$...not unitary in general!
Consequence:

$$
\begin{aligned}
\mathrm{H}^{\otimes \mathrm{n}}|0\rangle^{\otimes \mathrm{n}} & =\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\}^{\mathrm{n}}}|\mathrm{x}\rangle \\
\mathrm{U}\left(\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\}^{\mathrm{n}}}|\mathrm{x}\rangle|0\rangle\right) & =\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{x} \in\{0,1\}^{\mathrm{n}}}|\mathrm{x}\rangle|\mathrm{f}(\mathrm{x})\rangle
\end{aligned}
$$

Quantum parallelism

The main motivation for quantum computation: "perform many computations in superposition".

Lemma

Suppose we have a classical algorithm that computes some function $f:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{m}}$. Then we can build a quantum circuit U_{f} consisting only of Toffoli gates that maps

$$
\mathrm{U}_{\mathrm{f}} \quad: \quad|\mathrm{x}\rangle|0\rangle \mapsto|\mathrm{x}\rangle|\mathrm{f}(\mathrm{x})\rangle .
$$

Caution!

- One applies U_{f} just once, but the final state contains $\mathrm{f}(\mathrm{x})$ for all 2^{n} input values.
- However, measuring the output state in the computational basis only yields a single (random) couple ($\mathrm{x}, \mathrm{f}(\mathrm{x})$).
- Holevo theorem: one cannot extract more than n bits of information from n qubits

The early quantum algorithms

Query complexity model

Standard circuit model: input of computation is encoded in the input state; quantum circuit; measurement in computational basis ... how many gates?
Query complexity model: the input (e.g. a function) is accessed as a black box

N -bit input $\mathrm{x}=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{N}}\right) \in\{0,1\}^{\mathrm{N}}$

- Usually, $\mathrm{N}=2^{\mathrm{n}}$: bit x_{i} can be addressed with n -bit string i .
- Example: x is a Boolean function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}, \quad \mathrm{f}(\mathrm{i}) \equiv \mathrm{x}_{\mathrm{i}}$
- input $=$ N-bit memory (Random Access Memory) which can be accessed as a black-box at any point we want.
- modeled as a quantum unitary on $n+1$ qubits (n-bit address and single-bit target)

$$
\begin{gathered}
\mathrm{O}_{\mathrm{x}}:|\mathrm{i}, 0\rangle \mapsto\left|\mathrm{i}, \mathrm{x}_{\mathrm{i}}\right\rangle \\
\mathrm{O}_{\mathrm{x}}:|\mathrm{i}, \mathrm{~b}\rangle \mapsto\left|\mathrm{i}, \mathrm{x}_{\mathrm{i}} \oplus \mathrm{~b}\right\rangle
\end{gathered}
$$

- alternative phase-oracle: $\mathrm{O}_{\mathrm{x}, \pm}:|\mathrm{i}\rangle \mapsto(-1)^{\mathrm{x}_{\mathrm{i}}}|\mathrm{i}\rangle$

Some early algorithms

provide speedups in query complexity model, not in the standard circuit model

Deutsch-Jozsa (1992)

For $\mathrm{N}=2^{\mathrm{n}}$, we are given $\mathrm{x} \in\{0,1\}^{\mathrm{N}}$ either

- constant: all x_{i} are equal
- balanced: half of x_{i} are 0 , half are 1

Find which one.

Bernstein-Vazirani (1993)

For $N=2^{n}$, we are given $x \in\{0,1\}^{N}$ such that $\exists a \in\{0,1\}^{n}$ with $x_{i}=(i \cdot a) \bmod 2$. Find a.

Simon (1994)

For $\mathrm{N}=2^{\mathrm{n}}$, we are given $\mathrm{x}=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{N}}\right)$ with $\mathrm{x}_{\mathrm{i}} \in\{0,1\}^{\mathrm{n}}$ with the property that $\exists \mathrm{s} \neq 0 \in\{0,1\}^{\mathrm{n}}$ such that $\quad \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}} \Longleftrightarrow(\mathrm{i}=\mathrm{j} \quad$ or $\quad \mathrm{i}=\mathrm{j} \oplus \mathrm{s})$. Find s.

Deutsch-Josza

the problem

For $\mathrm{N}=2^{\mathrm{n}}$, we are given $\mathrm{x} \in\{0,1\}^{\mathrm{N}}$ either

- constant: all x_{i} are equal
- balanced: half of x_{i} are 0 , half are 1

Find which one.

complexity

- classical deterministic (no errors): at least $\mathrm{N} / 2+1$ queries needed
- classical if errors are allowed: constant number of queries
- quantum: single query!
\Longrightarrow separation quantum vs exact classical

Deutsch-Josza

$$
\begin{aligned}
\left|0^{\mathrm{n}}\right\rangle \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}|\mathrm{i}\rangle & \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{x}_{\mathrm{i}}}|\mathrm{i}\rangle \\
& \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{x}_{\mathrm{i}}} \sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{i} \cdot \mathrm{j}}|\mathrm{j}\rangle
\end{aligned}
$$

Amplitude of $\left|0^{\mathrm{n}}\right\rangle$ state:

$$
\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}(-1)^{x_{i}}=\left\{\begin{array}{cl}
1 & \text { if } x_{i}=0 \quad \forall \mathrm{i} \\
-1 & \text { if } x_{i}=1 \quad \forall \mathrm{i} \\
0 & \text { if } \mathrm{x} \text { is balanced }
\end{array}\right.
$$

Yields $\left|0^{\mathrm{n}}\right\rangle$ iff x is constant: 1 query and $\mathrm{O}(\mathrm{n})$ operations

Bernstein-Vazirani

the problem: linear function, find coefficients
For $N=2^{n}$, we are given $x \in\{0,1\}^{N}$ such that $\exists a \in\{0,1\}^{n}$ with $x_{i}=(i \cdot a) \bmod 2$. Find a.

complexity

- randomized classical, small errors allowed: needs at least n queries (each query gives at most 1 bit of info)
- quantum: single query!
same algorithm as Deusch-Josza: $(-1)^{x_{i}}=(-1)^{(\mathrm{i} \cdot \mathrm{a})} \bmod 2=(-1)^{\mathrm{i} \cdot \mathrm{a}}$ state after the query:

$$
\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{x}_{\mathrm{i}}}|\mathrm{i}\rangle=\frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{i} \cdot \mathrm{a}}|\mathrm{i}\rangle
$$

$$
\mathrm{H}=\mathrm{H}^{-1} \Longrightarrow|\mathrm{a}\rangle
$$

Simon's algorithm

Exponential speedup for query complexity (we count queries, not ordinary operations)

hidden period for 2-to-1 function

For $\mathrm{N}=2^{\mathrm{n}}$, we are given $\mathrm{x}=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{N}}\right)$ with $\mathrm{x}_{\mathrm{i}} \in\{0,1\}^{\mathrm{n}}$ with the property that $\exists \mathrm{s} \neq 0 \in\{0,1\}^{\mathrm{n}}$ such that

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}} \Longleftrightarrow(\mathrm{i}=\mathrm{j} \quad \text { or } \quad \mathrm{i}=\mathrm{j} \oplus \mathrm{~s}) .
$$

Find s.
Note that x_{i} is an n -bit string, not a single bit.

complexity

- randomized classical algorithm in $\mathrm{O}\left(\sqrt{2^{\mathrm{n}}}\right)$ queries with birthday paradox
- this is essentially optimal for classical algorithms
- quantum (Simon's algorithm): O(n) queries
\Longrightarrow exponential separation quantum vs randomized classical

Simon's algorithm

$$
\left|0^{\mathrm{n}}\right\rangle\left|0^{\mathrm{n}}\right\rangle \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\} \mathrm{n}}|\mathrm{i}\rangle\left|0^{\mathrm{n}}\right\rangle \longrightarrow \frac{1}{\sqrt{2^{\mathrm{n}}}} \sum_{\mathrm{i} \in\{0,1\} \mathrm{n}}|\mathrm{i}\rangle\left|\mathrm{x}_{\mathrm{i}}\right\rangle
$$

Measure 2nd n-bit register: yields $x_{i} \in\{0,1\}^{n}$, collapses the first register to superposition of 2 indices compatible with x_{i}

$$
\frac{1}{\sqrt{2}}(|\mathrm{i}\rangle+|\mathrm{i} \oplus \mathrm{~s}\rangle)\left|\mathrm{x}_{\mathrm{i}}\right\rangle
$$

Hadamard to first n qubits:

$$
\frac{1}{\sqrt{2^{\mathrm{n}+1}}}\left(\sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{i} \cdot \mathrm{j}}|\mathrm{j}\rangle+\sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{(\mathrm{i} \oplus \mathrm{~s}) \cdot \mathrm{j}}|\mathrm{j}\rangle\right)=\frac{1}{\sqrt{2^{\mathrm{n}+1}}} \sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{i} \cdot \mathrm{j}}\left(1+(-1)^{\mathrm{s} \cdot \mathrm{j}}\right)|\mathrm{j}\rangle
$$

Simon's algorithm

Measure state

$$
\frac{1}{\sqrt{2^{\mathrm{n}+1}}} \sum_{\mathrm{j} \in\{0,1\}^{\mathrm{n}}}(-1)^{\mathrm{i} \cdot \mathrm{j}}\left(1+(-1)^{\mathrm{s} \cdot \mathrm{j}}\right)|\mathrm{j}\rangle
$$

- $|\mathrm{j}\rangle$ has nonzero amplitude iff $\mathrm{s} \cdot \mathrm{j}=0 \bmod 2$.
- The measurement outcome is uniformly drawn from $\{\mathrm{j} \mid \mathrm{s} \cdot \mathrm{j}=0 \bmod 2\}$.
- \Longrightarrow linear equation giving information about s
- repeat until we get $\mathrm{n}-1$ independent linear equations
- solutions are 0 and s via Gaussian elimination (classical circuit of size $O\left(n^{3}\right)$)
\Longrightarrow exponential speedup in the query complexity model! Can we get it in the standard model as well?

Recap

- quantum computers can exploit quantum parallelism, but cannot really do an exponential number of computations in parallel
- one single output!
- different models of quantum computing: circuit, measurement-based, adiabatic computing, all equivalent (up to polynomials)

Today: "speedup" in query complexity model

- black-box access to a function
- provable, exponential improvement, but not in a real situation

Next week: speedup in standard gate complexity model

- Shor's algorithm for factoring
- Grover's algorithm for search

