

Electrical quantum engineering with superconducting circuits

P. Bertet & R. Heeres

SPEC, CEA Saclay (France), Quantronics group

Outline

Lecture 1: Basics of superconducting qubits

- 1) Introduction: Hamiltonian of an electrical circuit
- 2) The Cooper-pair box
- 3) Decoherence of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

- 1) Readout using a resonator
- 2) Amplification & Feedback
- 3) Quantum state engineering

Lecture 3: Multi-qubit gates and algorithms

- 1) Coupling schemes
- 2) Two-qubit gates and Grover algorithm
- 3) Elementary quantum error correction

Lecture 4: Introduction to Hybrid Quantum Devices

Rationale for the hybrid way

Rationale for the hybrid way

Rationale for the hybrid way

This lecture : spins / superconducting circuits

These lectures : spins / superconducting circuits

Superconducting qubits

- Macroscopic circuits (100s μm)
- Easily controlled, entangled, readout
- Ultimate microwave detectors

Spins in crystals

- Long coherence times (1s 6hrs)
- Optical transitions

- Superconducting circuits to improve spin detection
- Superconducting circuits to mediate interaction between spins
- Spins to store quantum information from superconducting qubits
- Spins to convert superconducting qubit state into optical photons

Outline

Lecture 1: Basics of superconducting qubits

- 1) Introduction: Hamiltonian of an electrical circuit
- 2) The Cooper-pair box
- 3) Decoherence of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

- 1) Readout using a resonator
- 2) Amplification & Feedback
- 3) Quantum state engineering

Lecture 3: Multi-qubit gates and algorithms

- 1) Coupling schemes
- 2) Two-qubit gates and Grover algorithm
- 3) Elementary quantum error correction

Lecture 4: Introduction to Hybrid Quantum Devices

- 1) Spins for hybrid quantum devices
- 2) Circuit-QED-enabled high-sensitivity magnetic resonance
- 3) Spin-ensemble quantum memory for superconducting qubit

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

Long coherence times —> Nuclear-spin-free host crystal

- Carbon : ¹²C has no nuclear spins, ¹³C has spin ½ but 1.1% nat. Abundance
- Silicon : ²⁸Si has no nuclear spins, ²⁹Si has spin ½ but 4.7% nat. Abundance
- Both materials can be isotopically purified : magnetically silent crystals

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

- Low dc magnetic field for compatibility with superconducting circuits

Need $\omega_s(B_0) = \omega_0$

But large B_0 causes vortices Microwave losses ! (even w. parallel field)

> Aluminum : $B_0 \le 100$ Gs Niobium : $B_0 \le 1$ T NbTiN : $B_0 \le 5$ T

Circuits with Josephson junctions ? Probably $B_0 \le 100$ Gs

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

- Long coherence times —> Nuclear-spin-free host crystal
- Low dc magnetic field for compatibility with superconducting circuits

Nitrogen-Vacancy (NV⁻) centers in diamond

Detection at the single emitter level at 300K using confocal microscopy

Gruber et al., Science 276, 2012 (1997)

Spin-dependent photoluminescence

• Ground state is spin triplet, solid-state spin-qubit

• Optical pumping leads to strong polarization in m_s=0

 Spin-dependent photoluminescence : Optical detection of magnetic resonance (ODMR)

Spin Hamiltonian : Notations

In all these lectures, we use dimensionless spin operators

 $\widehat{S} = \widehat{S}/\hbar$ Spin 1 Spin ¹/₂ $\hat{S}_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ $\hat{S}_{z} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{2} \hat{\sigma}_{z}$ $\hat{S}_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$ $\hat{S}_x = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \hat{\sigma}_x$ $\hat{S}_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$ $\hat{S}_{\mathcal{Y}} = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \frac{1}{2} \hat{\sigma}_{\mathcal{Y}}$

Magnetization of a spin : $\widehat{M} = \gamma \hbar \widehat{S}$

GYROMAGNETIC RATIO $\frac{\gamma_e}{2\pi} = 28$ GHz/T for a free electron

Spin Hamiltonian

Spin Hamiltonian

0.8

Spin Hamiltonian

Hyperfine ODMR spectrum

Decoherence mechanisms in spins (1) : energy relaxa

 $\Gamma_1 = \Gamma_{1,rad} + \Gamma_{1,ph}$

Decoherence mechanisms in spins (1) : energy relaxa

In free space, and at X-band frequencies (7 – 9GHz), $\Gamma_{1,rad} \sim 10^{-16} s^{-1}$

For NV in diamond:@300K $\Gamma_{1,ph} \sim 300s^{-1}$ i.e. $T_1 = 3ms$ @20mK $\Gamma_{1,ph} \ll 10^{-2}s^{-1}$ i.e. $T_1 \gg 100s$

AT LOW TEMPERATURES, ENERGY RELAXATION IS IN GENERAL NEGLIC

Decoherence mechanisms in spins (2) : dephasing

SPIN-BATH : paramagnetic impurities or nuclear spins

 Due to spin bath, spins of same species have slightly different frequence (inhomogeneous broadening)

Decoherence mechanisms in spins (2) : dephasing

SPIN-BATH : paramagnetic impurities or nuclear spins

- Due to spin bath, spins of same species have slightly different frequence (inhomogeneous broadening)
- Dephasing is due to the slow evolution of the spin-bath under flip-flop events

Various coherence times

Ramsey pulse sequence Sensitive to inhomogeneous broadening slow noise

$$\langle S_{\chi} \rangle = e^{-\left(\frac{T}{T_{2}^{*}}\right)^{\alpha}} \quad \alpha \sim 2$$

π

 $\rightarrow \leftrightarrow$

π/2

 $\pi/2$

π

Hahn-echo pulse sequence Insensitive to static noise

$$\langle S_{\chi} \rangle = e^{-\left(\frac{2T}{T_2}\right)^{\beta}} \beta \sim 2-3$$

Dynamical decoupling pulse sequend Insensitive to low-frequency noise

$$\langle S_{\chi} \rangle = e^{-\left(\frac{NT}{T_{2DD}}\right)^{\gamma}} \gamma \sim 2-3$$

Because spin-bath is slow, in general $T_2^* \ll T_2 \ll T_{2DD}$

MEASURE $\langle S_z \rangle$

Hahn echo on NVs in isotopically purified diamond

G. Balasubramyan et al., Nature Materials (2008)

Typical : $T_2/T_2^* \sim 100$

Summary : NV centers for hybrid quantum devices

- Single electron trapped in a diamond lattice
- Can be operated in $B_0 \sim 0 10$ Gs because of zero-field splitting
- Long coherence times possible in ultra-pure crystals
- Can be optically reset in its ground state
- Individual NVs / ensembles can be characterized at 300K with ODMR

Bismuth donors in silicon

Bismuth donors in silicon

Same Hamiltonian as P:Si (cf M. Pioro lectures)

$$\frac{H}{\hbar} = \boldsymbol{B}_{0} \cdot (-\gamma_{e}\boldsymbol{S} - \gamma_{n}\boldsymbol{I}) + A\boldsymbol{I} \cdot \boldsymbol{S}$$
ZEEMAN EFFECTHYPERFINE

Two differences : • Nuclear spin I=9/2

- Large hyperfine coupling $\frac{A}{2\pi} = 1.4754$ GHz
- Useful to introduce F = I + S the total angular momentum
- Note : $[H, F_z] = 0$ so that energy eigenstates are always states with well-defined $m_F = m_S + m_I$

Bi:Si energy levels

The low-field limit

LOW-FIELD $\gamma_e B_0 \ll A$ **Eigenstates of** $\sim |F, m_F\rangle$

Hybridized eletro-nuclear spin states $\alpha |-1/2, m_I \rangle + \beta |+1/2, m_I - 1 \rangle$

The low-field limit

10 « allowed » transitions at low field

Summary : Bismuth donors in Silicon for hybrid quantum device

- Single electron trapped in a silicon lattice
- Can be operated in $B_0 \sim 0 10$ Gs because of large hyperfine interaction
- Long coherence times in isotopically purified silicon
- Rich level diagram (naturally occurring λ transitions)

Classical drive

Interaction Hamiltonian : $H_{int} = -\widehat{M} \cdot \widehat{B}_1$

Interaction Hamiltonian :
$$H_{int} = -\widehat{M} \cdot \widehat{B}_1$$

= $-\gamma \hbar \widehat{S} \cdot \delta B_1(\widehat{a} + \widehat{a}^+)$

Interaction Hamiltonian : $H_{int} = -\widehat{M} \cdot \widehat{B}_1$ = $-\gamma \hbar \widehat{S} \cdot \delta B_1(\widehat{a} + \widehat{a}^+)$ $\frac{H_{int}}{\hbar} = -\gamma \delta B_{1,\parallel} \widehat{S}_z(\widehat{a} + \widehat{a}^+) - \gamma \delta B_{1,\perp} \widehat{S}_x(\widehat{a} + \widehat{a}^+)$
Spin-LC resonator coupling

Interaction Hamiltonian : $H_{int} = -\widehat{M} \cdot \widehat{B}_1$

$$= -\gamma \hbar \,\widehat{S} \cdot \delta B_{1}(\hat{a} + \hat{a}^{+})$$
$$\frac{H_{int}}{\hbar} = -\gamma \delta B_{1,\parallel} \hat{S}_{z}(\hat{a} + \hat{a}^{+}) - \gamma \delta B_{1,\perp} \hat{S}_{x}(\hat{a} + \hat{a}^{+})$$

Fast rotating term : neglected

Spin-LC resonator coupling

Interaction Hamiltonian :
$$H_{int} = -\widehat{M} \cdot \widehat{B}_{1}$$

$$= -\gamma \hbar \widehat{S} \cdot \delta B_{1}(\widehat{a} + \widehat{a}^{+})$$

$$\stackrel{H_{int}}{\sim} = -\gamma \delta B_{1,\parallel} \widehat{S}_{z}(\widehat{a} + \widehat{a}^{+}) - \gamma \delta B_{1,\perp} \widehat{S}_{x}(\widehat{a} + \widehat{a}^{+})$$

$$\stackrel{H_{int}}{\rightarrow} = -\gamma \delta B_{1,\perp} \widehat{S}_{z}(\widehat{a} + \widehat{a}^{+}) - \gamma \delta B_{1,\perp} \widehat{S}_{x}(\widehat{a} + \widehat{a}^{+})$$

$$\stackrel{H_{int}}{\rightarrow} = -\gamma \delta B_{1,\perp} \langle 0|\widehat{S}_{x}|1\rangle (\sigma_{-} + \sigma_{+})(\widehat{a} + \widehat{a}^{+})$$

Spin-LC resonator coupling

Coupling constant estimate (1) : Magnetic field fluctuation

$$\delta B_{1,\perp} \sim \frac{\mu_0}{4\pi r} \delta i_0$$
 with $\delta i_0 = \omega_0 \sqrt{\frac{\hbar}{2Z_0}}$ and $Z_0 = \sqrt{L/C}$

CURRENT FLUCTUATIONS RESONATOR IMPEDANCE

For large coupling need resonators with

- High frequency ω_0 (but fixed by the spins !)
- Low impedance i.e. low L and high C In practice, for 2D resonators : $10\Omega < Z_0 < 300\Omega$

Coupling constant estimate

$$\frac{\gamma_e}{2\pi} = -28GHz/T \qquad g = -\gamma_e \delta B_{1,\perp} \langle 0 | \hat{S}_x | 1 \rangle$$

Bi:Si (9-10) : $\langle 0|S_{\chi}|1\rangle = 0.47$ NV centers : $\langle 0|S_{\chi}|1\rangle = 1/\sqrt{2}$

	NV centers $\frac{\omega_s}{2\pi} =$ 2.9 <i>GHz</i>	$\frac{\omega_s}{2\pi} = 7.4 GHz$
$Z_0 = 50$ Ω, $r = 1 \mu m$	$\frac{g}{2\pi} = 70$ Hz	$\frac{g}{2\pi} = 120 \text{Hz}$
$Z_0 = 15\Omega, r = 20nm$	$\frac{g}{2\pi} = 6$ kHz	$\frac{g}{2\pi} = 11$ kHz

Coupling regimes

Overall, spin-resonator coupling constant $\frac{g}{2\pi} \sim 0.01 - 1$ kHz (up to 10kHz for extreme dimensions)

Comparison to resonator and spin damping rates ?

- Resonators : Highest quality factor reported @1photon level is Q=10⁶ i.e. energy damping rate $\kappa = \frac{\omega_0}{o} \ge 3 \cdot 10^4 s^{-1} \gg g$
- Spins : in isotopically pure crystals, possible to obtain $T_2^* = 100 500 \mu s$ i.e. dephasing rate ~ or even lower than g

 $g < \kappa$ or even $g \ll \kappa$: « bad cavity » REGIME (\neq circuit QED)

Outline

Lecture 1: Basics of superconducting qubits

- 1) Introduction: Hamiltonian of an electrical circuit
- 2) The Cooper-pair box
- 3) Decoherence of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

- 1) Readout using a resonator
- 2) Amplification & Feedback
- 3) Quantum state engineering

Lecture 3: Multi-qubit gates and algorithms

- 1) Coupling schemes
- 2) Two-qubit gates and Grover algorithm
- 3) Elementary quantum error correction

Lecture 4: Introduction to Hybrid Quantum Devices

- 1) Spins for hybrid quantum devices
- 2) Circuit-QED-enabled high-sensitivity magnetic resonance
- 3) Spin-ensemble quantum memory for superconducting qubit

Spins in a « bad cavity »: the model

$$\frac{H}{\hbar} = -\frac{\omega_s}{2}\sigma_z + \omega_0 a^+ a + g(a^+\sigma_- + a\sigma_+)$$

+ drive at ω_0 $H(t) = i\hbar\sqrt{\kappa}\beta(-e^{-i\omega_0 t}a + e^{i\omega_0 t}a^+)$

In rotating frame at ω_0 : $\frac{H}{\hbar} = -\delta\sigma_z + g(a^+\sigma_- + a\sigma_+) + \beta(-a + a^+)$

Damping terms (taken into account in Lindblad form) :

- energy in cavity at rate $\kappa = \omega_0/Q$
- Spin dephasing at rate γ_2^*

A. Blais et al., PRA 69, 062320 (2004) J. Gambetta et al., PRA 77, 012112 (2008)

Spins in a « bad cavity »: the model

Approximations : « bad cavity limit » $g \ll \kappa$

Field-spin correlations are neglected

 $\langle \sigma_+ a \rangle = \langle \sigma_+ \rangle \langle a \rangle$ $\langle \sigma_z a \rangle = \langle \sigma_z \rangle \langle a \rangle$ $\langle \sigma_- a \rangle = \langle \sigma_- \rangle \langle a \rangle$

To find spin steady-state operators :

1) Solve for field <a> without spin

2) Take stationary values of spin operators for spin driven by cavity field (classical Rabi oscillation in field <a> in the cavity), with additional decay channel provided by the cavity γ_P

Adiabatic elimination of the cavity field, see B. Julsgaard et al., PRA 85, 032327 (2012) C. Hutchison et al., Canadian Journ of Phys. 87, 225 (2009)

The Purcell effect

B. Julsgaard et al., PRA 85, 032327 (2012)C. Hutchison et al., Canadian Journ of Phys. 87, 225

(2009)

- New way to initialize spins in ground state ?
- Can be tuned by changing spin/resonator detuning $\omega_s \omega_0$

Field radiated by the spins

Steady-state value of the cavity field

$$\langle a \rangle = \frac{2\beta}{\sqrt{\kappa}} - \begin{cases} i \frac{2g}{\kappa} \langle \sigma_{-} \rangle \\ \\ \text{Cavity field} \\ \text{w/o spin} \end{cases}$$
Field radiated by spin in cav

Spin signal proportional to $\langle \sigma_{-} \rangle$

Output signal from N identical spins

$$\langle a \rangle_{out} = i \frac{2Ng}{\sqrt{\kappa}} \langle \sigma_{-} \rangle$$

Conventional Pulsed "Inductive Detection" Electron Spin Resonance (ESR)

Sensitivity of an inductive detection spectrometer

Number of noise photons in the detected quadrature bandwidth $n_{I} = \frac{S_{I}(\omega)}{r}$

Sensitivity of an inductive detection spectrometer

 $p = \tanh$

 n_I

Single-spin signal Cooperativity $C = \frac{g^2 T_2^*}{\kappa}$

Sensitivity of an inductive detection spectrometer

$$n_I = n_{eq,I} + n_{amp,I}$$

EPR spectroscopy : state-of-the-art

Quantum limited ESR with Parametric Amplifier

Quantum limited ESR with Parametric Amplifier

Quantum limited ESR with Parametric Amplifier

Quantum limited ESR with Parametric Amplifier 20mK plate Attenuators Circulators **JPA** 2-axis coil w. sample

The Spins: Bi donors in ²⁸Si ²⁸Si 10 allowed ESR-like transitions @ low B **B**₀ 7.55 (ZHS) 7.45 7.35 7.25 Implanted Bi 10 Resonator [Bi] (10¹⁶ cm⁻³) 7.15 20 40 60 80 100 5 Magnetic Field (G) • $m_F = 4 \rightarrow m_F = 5$, @~50 G 150 300 • $m_F = 3 \rightarrow m_F = 4$, @~70 Gs depth (nm)

Spin echo detection

A. Bienfait et al., Nature Nano (2015)

Coherence time

A. Bienfait et al., Nature Nano (2015)

Spectrometer single-shot sensitivity

Sensitivity : $N_{1e} = 1.2 \cdot 10^4 / 7 = 1.7 \, 10^3$ spins per echo

• Gain $\sim 10^4$ comp. to state-of-the-art (Sigillito et al., APL, 2014)

• Consistent with expectations from formula $N_{min} \sim \frac{1}{p} \sqrt{\frac{n\omega_0}{qT_E} \frac{1}{g}}$

EPR sensitivity : summary

Absolute sensitivity and spin relaxation time T_1

Repetition rate ?? Limited by time T_1 needed for spins to reach thermal equilibrium

- Spectrometer absolute sensitivity : 1700 spin/ \sqrt{Hz}
- « Short » T₁ due to spontaneous emission in the cavity (Purcell effect)

Observing the Purcell effect for spins

A. Bienfait et al., Nature (2016)

Outline

Lecture 1: Basics of superconducting qubits

- 1) Introduction: Hamiltonian of an electrical circuit
- 2) The Cooper-pair box
- 3) Decoherence of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

- 1) Readout using a resonator
- 2) Amplification & Feedback
- 3) Quantum state engineering

Lecture 3: Multi-qubit gates and algorithms

- 1) Coupling schemes
- 2) Two-qubit gates and Grover algorithm
- 3) Elementary quantum error correction

Lecture 4: Introduction to Hybrid Quantum Devices

- 1) Spins for hybrid quantum devices
- 2) Circuit-QED-enabled high-sensitivity magnetic resonance
- 3) Spin-ensemble quantum memory for superconducting qubit

Hybrid quantum processor

Interest :

Long coherence time
 Economical in processing qubits
 Intrinsic low-crosstalk in gates and qubit readout

. . . .

Entangled states

Sketch of hybrid quantum processor

Bi:Si J possible
Spin ensemble – resonator system

Coupling of the resonator to one collective spin mode

Frequency-tuning by flux

Frequency-tuning by flux

Frequency-tuning by flux

Spectroscopy

Resonator transmission

2.86

(ZHS) (2.85 2.84 2.84 2.83

2.82

Qubit characterization

Transmon and quantum bus interaction : the SWAP gate

Resonant SWAP gate

Transmon and quantum bus interaction : the SWAP gate

Resonant SWAP gateAdiabatic SWAP gatebus π π qubit π r π π

Prepare the Qubit in $|\mathbf{1}_{\mathbf{Q}}\rangle$

Qubit readout

WRITE efficiency

WRITE: storage of $(|0\rangle + |1\rangle)/\sqrt{2}$

WRITE: storage of $(|0\rangle + |1\rangle)/\sqrt{2}$

Spin-photon entanglement

Lecture Conclusions

Fruitful marriage of circuit Quantum Electrodynamics and Magnetic Resonance

- Magnetic resonance detection reaching the quantum limit of sensitivity
- Quantum fluctuations of the field affect spin dynamics (Purcell effect)
- Use squeezing as a resouce to improve sensitivity even further
- Quantum memory applications within reach

Perspectives

- Reach single-spin detection sensitivity
- Build a platform for spin-based quantum computation