University Paris-Saclay - IQUPS

Optical Quantum Engineering:
From fundamentals to applications
Philippe Grangier,
Institut d'Optique, CNRS, Ecole Polytechnique.

- Lecture 1 (7 March, 9:15-10:45) :

Qubits, entanglement and Bell's inequalities.

- Lecture 2 (14 March,11:00-12:30) :

From QND measurements to quantum gates and quantum information.

- Lecture 3 (21 March, 9:15-10:45) :

Quantum cryptography with discrete and continuous variables.

- Lecture 4 (28 March, 11:10-12:30) :

Non-Gaussian quantum optics and optical quantum networks.
2. a. Each measurement can give the results ± 1, so there are 4 possibilities $\left(+a,+_{b}\right),\left(+_{a},-_{b}\right),\left(-a,+_{b}\right)$, et $\left(-a,-_{b}\right)$ with probabilities :

$$
P_{++}=P_{--}=\frac{1}{2} \sin ^{2}\left(\frac{\theta_{2}-\theta_{1}}{2}\right), \quad P_{+-}=P_{-+}=\frac{1}{2} \cos ^{2}\left(\frac{\theta_{2}-\theta_{1}}{2}\right)
$$

2.b For one particle one sums the results for the other one, and thus

$$
P_{+}=P_{++}+P_{+-}=1 / 2 \quad \text { et } P_{-}=P_{-+}+P_{--}=1 / 2
$$

2.c $P_{\text {cond }}=P_{+-} / P_{-}=\cos ^{2}\left(\left(\theta_{2}-\theta_{1}\right) / 2\right)$
2.d If $\theta_{2}=\theta_{1}$ then $P_{\text {cond }}=1$: full correlation between results.
2.e. $E_{Q}=P_{++}-P_{+-}-P_{-+}+P_{--}$: correlation function. $E_{Q}=-\cos ^{2}\left(\left(\theta_{2}-\theta_{1}\right) / 2\right)+\sin ^{2}\left(\left(\theta_{2}-\theta_{1}\right) / 2\right)=-\cos \left(\theta_{2}-\theta_{1}\right)=-\vec{a} \cdot \vec{b}$
Si $\left|E_{Q}\right|=1$ again full correlation (or anticorrelation) between the results.

1. Bell's Inequalities : solution

1. By inverting the equations when $\phi=0$ we get :

$$
\begin{aligned}
& |+z\rangle=\cos (\theta / 2)|+\vec{u}\rangle-\sin (\theta / 2)|-\vec{u}\rangle \\
& |-z\rangle=\sin (\theta / 2)|+\vec{u}\rangle+\cos (\theta / 2)|-\vec{u}\rangle
\end{aligned}
$$

and thus (omitting the vector symbol) :

$$
\begin{aligned}
\left|+{ }_{z},-{ }_{z}\right\rangle & =\cos \left(\theta_{1} / 2\right) \sin \left(\theta_{2} / 2\right)\left|+{ }_{a},{ }_{b}\right\rangle+\cos \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)\left|+a,-{ }_{b}\right\rangle \\
& -\sin \left(\theta_{1} / 2\right) \sin \left(\theta_{2} / 2\right)\left|-a,+{ }_{b}\right\rangle-\sin \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)\left|-a,-{ }_{b}\right\rangle \\
\left|-{ }_{z},+{ }_{z}\right\rangle & =\sin \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)\left|+{ }_{a},{ }_{b}\right\rangle-\sin \left(\theta_{1} / 2\right) \sin \left(\theta_{2} / 2\right)\left|+a,-{ }_{b}\right\rangle \\
& +\cos \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)\left|-a,+{ }_{b}\right\rangle-\cos \left(\theta_{1} / 2\right) \sin \left(\theta_{2} / 2\right)\left|-a,{ }_{b}\right\rangle
\end{aligned}
$$

and thus:
$|\psi\rangle=\left(\sin \left(\left(\theta_{2}-\theta_{1}\right) / 2\right)\left|+_{a},+_{b}\right\rangle+\cos \left(\left(\theta_{2}-\theta_{1}\right) / 2\right)\left|+{ }_{a},-_{b}\right\rangle\right.$

$$
\left.-\cos \left(\left(\theta_{2}-\theta_{1}\right) / 2\right)|-a,+b\rangle+\sin \left(\left(\theta_{2}-\theta_{1}\right) / 2\right)|-a,-b\rangle\right) / \sqrt{2}
$$

3. $A(\lambda, \vec{a})$ et $A\left(\lambda, \vec{a}^{\prime}\right)$ are either equal or opposite in sign.

- if equal $A(\lambda, \vec{a})+A\left(\lambda, \vec{a}^{\prime}\right)= \pm 2$ and $A(\lambda, \vec{a})-A\left(\lambda, \vec{a}^{\prime}\right)=0$, so $s(\lambda)= \pm 2$
- if opposite $A(\lambda, \vec{a})+A\left(\lambda, \vec{a}^{\prime}\right)=0$ and $A(\lambda, \vec{a})-A\left(\lambda, \vec{a}^{\prime}\right)= \pm 2$, so $s(\lambda)= \pm 2$. The average of a quantity equal to ± 2 over a positive and normalized distribution must be between +2 and -2 , hence the result.

4. For the indicated angles one has

$$
S_{Q}=-3 \cos (\theta)+\cos (3 \theta) \text { thus } d S_{Q} / d \theta=3(\sin (\theta)-\sin (3 \theta))
$$

The derivative cancels for $3 \theta=\theta+2 n \pi$, i.e. $\theta=n \pi$ (minimum), or $3 \theta=\pi-\theta+2 n \pi$, i.e. $\theta=\pi / 4+n \pi / 2$ (maximum).

One has thus $\theta=\pi / 4$ ou $3 \pi / 4$, and

$$
S_{Q}=-3 \cos (\pi / 4)+\cos (9 \pi / 4)=-4 \cos (\pi / 4)=-2 \sqrt{2}
$$

Finally one has $\left|S_{Q, \max }\right|=2 \sqrt{2}>2$: conflict
2. QND measurement of a spin component : solution.

One wants to perform a QND measurement of $\hat{\sigma}_{z}$ on a qubit "a" : if the qubit is a spin $1 / 2$ particle, one gets the spin "a" to interact with another spin " b " during a time τ, and read out the result on spin " b ".

An appropriate interaction Hamiltonian is : $H_{m}=\hbar g \hat{\sigma}_{a z} \hat{\sigma}_{b x} / 2$

Everything happens as if qubit a creates on qubit b an effective magnetic field, aligned along $O x$, with a sign depending on the state $| \pm\rangle_{a z}$ (see exercise!).

QND measurement of a spin component.
One wants to perform a measurement on a qubit "a" by using an indirect (rather than direct) measurement, called a "Quantum Non Demolition" (QND) measurement. For instance, if the qubit is a spin $1 / 2$ particle, one will not use a Stern-Gerlach magnet, but rather get the spin "a" to interact with another spin " b " during a time τ, and read out the result on spin " b ". After the interaction, one measures (directly) the state of qubit b , and one wants to infer the states of qubit a.
The spin observables of the two qubits are $\vec{\sigma}_{a, b}$ and

$$
\begin{aligned}
\sigma_{a x}|a x: \pm 1\rangle & = \pm|a x: \pm 1\rangle \\
\sigma_{a y}|a y: \pm 1\rangle & = \pm|a y: \pm 1\rangle \\
\sigma_{a z}|a z: \pm 1\rangle & = \pm|a z: \pm 1\rangle
\end{aligned}
$$

with the same definitions for b, and :

$$
\begin{gathered}
|a x: \pm\rangle=(|a z:+\rangle \pm|a z:-\rangle) / \sqrt{2}, \quad|a y: \pm\rangle=(|a z:+\rangle \pm i|a z:-\rangle) / \sqrt{2} \\
|a y: \pm\rangle=((1 \pm i)|a x:+\rangle+(1 \mp i)|a x:-\rangle) / 2
\end{gathered}
$$

4. Starting from the initial state $|\psi(0)\rangle=(\alpha|a z:+\rangle+\beta|a z:-\rangle) \otimes|b y:+\rangle$, one measures the spin component of qubit b along Oz , after the interaction has been carried out and turned off.
What are the possible results, and what are their probabilities ? After this measurement, what can be said about the component along $O z$ for qubit a ? Justify the name "QND measurement" given to this kind of process.
$|\psi(0)\rangle=(\alpha|a z:+\rangle+\beta|a z:-\rangle) \otimes|b y:+\rangle$ and from the superposition principle :

$$
|\psi(\tau)\rangle=(\alpha|a z:+\rangle|b z:+\rangle+i \beta|a z:-\rangle|b z:-\rangle)
$$

This is a correlated state very close to the EPR state : a measurement on qubit gives +1 with probability $|\alpha|^{2}$ and -1 with probability $|\beta|^{2}$. For each result, the state of qubit a is perfectly known after the measurement ("reduction of the wave packet"). The quantum measurement of $\sigma_{a z}$ is done by an "indirect measurement", called a QND measurement.

3. Schmidt decomposition : solution.

1. One has:
$\left|\psi_{A B}\right\rangle=\sum_{i, j} c_{i j}\left|u_{i}\right\rangle_{A}\left|v_{j}\right\rangle_{B}=\sum_{i}\left|u_{i}\right\rangle_{A}\left(\sum_{j} c_{i j}\left|v_{j}\right\rangle_{B}\right)=\sum_{i}\left|u_{i}\right\rangle_{A}\left|w_{i}\right\rangle_{B}$
where we define $\left|w_{i}\right\rangle_{B}=\sum_{j} c_{i j}\left|v_{j}\right\rangle_{B}$.
2. One has $\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|=\sum_{i, j}\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)_{A}\left(\left|w_{i}\right\rangle\left\langle w_{j}\right|\right)_{B}$ and thus:

$$
\begin{aligned}
\rho_{A} & =\sum_{i, j, k}\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)_{A}\left\langle v_{k} \mid w_{i}\right\rangle\left\langle w_{j} \mid v_{k}\right\rangle \\
& =\sum_{i, j, k}\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)_{A}\left\langle w_{j} \mid v_{k}\right\rangle\left\langle v_{k} \mid w_{i}\right\rangle \\
& =\sum_{i, j}\left(\left|u_{i}\right\rangle\left\langle u_{j}\right|\right)_{A}\left\langle w_{j} \mid w_{i}\right\rangle
\end{aligned}
$$

where we used the closure relation $\sum_{k}\left|v_{k}\right\rangle\left\langle v_{k}\right|=I$.
4. Security of quantum cryptography: solution

1. Mutual informations $I_{B A}$ and $I_{B E}$:
$I_{B A}=H\left(B_{X}\right)-H\left(B_{X} \mid A\right)$ et $I_{B E}=H\left(B_{X}\right)-H\left(B_{X} \mid E\right)$.
and therefore $\Delta I=I_{A B}-I_{B E}=H\left(B_{X} \mid E\right)-H\left(B_{X} \mid A\right)$.
2. Starting from a pure entangled state, Bob will receive a pure state conditioned by Alice's and Eve's measurement. One can then use the entropic inequalities and thus $H\left(B_{X} \mid A, E\right)+H\left(B_{Y} \mid A, E\right) \geq-2 \log _{2} c$.

Since the entropies can only increase when igoring (deleting) part of the information one has

$$
H\left(B_{X} \mid E\right)+H\left(B_{Y} \mid A\right) \geq-2 \log _{2} c
$$

3. It is assumed that $\rho_{A}=\sum_{i} p_{i}\left(\left|u_{i}\right\rangle \mid\left\langle u_{i}\right|\right)_{A}$, and this by using the result of the previous question:
$\left\langle w_{j} \mid w_{i}\right\rangle=0$ if $i \neq j$, therefore the vectors $\left\{\left|w_{i}\right\rangle\right\}$ are orthogonal.
$\left\langle w_{i} \mid w_{i}\right\rangle=p_{i}$, so the norm of $\left|w_{i}\right\rangle$ is equal to $\sqrt{p_{i}}$.
4. Defining $\left|\tilde{w}_{j}\right\rangle=\left|w_{j}\right\rangle / \sqrt{p_{j}}$ the vectors $\left\{\left|\tilde{w}_{j}\right\rangle_{B}\right\}$ are normalized and orthogonal, and one has :

$$
\left|\psi_{A B}\right\rangle=\sum_{i} \sqrt{p_{i}}\left|u_{i}\right\rangle_{A}\left|\tilde{w}_{i}\right\rangle_{B}
$$

5. Using the Schmidt decomposition of the state $\left|\psi_{A B}\right\rangle$ one gets :

$$
\rho_{B}=\sum_{i} p_{i}\left(\left|\tilde{w}_{i}\right\rangle\left\langle\tilde{w}_{i}\right|\right)_{B}
$$

The reduced density matrix ρ_{A} et ρ_{B} have the same non-zero eigenvalues, which are p_{i}.
6. The Schmidt number is equal to one iff $\left|\psi_{A B}\right\rangle=\left|\phi_{A}\right\rangle\left|\chi_{B}\right\rangle$, which is true iff $\left|\psi_{A B}\right\rangle$ is separable
3. Using $H\left(B_{X} \mid E\right) \geq-2 \log _{2} c-H\left(B_{Y} \mid A\right)$ one gets:

$$
\Delta I \geq-2 \log _{2} c-H\left(B_{X} \mid A\right)-H\left(B_{Y} \mid A\right)=-2\left(\log _{2} c+H(B \mid A)\right)
$$

The protocol will be secure if $\Delta I>0$, this is obtained when $\log _{2} c+$ $H(B \mid A)<0$ or also $H(B \mid A)<-\log _{2} c$
4. For the BB84 protocol one has $c=1 / \sqrt{2}$ and thus $-\log _{2} c=1 / 2$.

The protocol will be secure if $H(B \mid A)<1 / 2$.
Since $H(B)=1$ (isotropic density matrix), one has :

$$
I_{A B}=H(B)-H(B \mid A)>1 / 2
$$

5. One has $I_{A B}=1-H(e)$, où $H(e)=-e \log _{2} e-(1-e) \log _{2}(1-e)$.

Therefore one require $1-H(e)>1 / 2$, or also $H(e)<1 / 2$ (could be directly obtained from $H(B \mid A)<1 / 2$). By plotting $H(e)$ one sees that this condition corresponds to $e<11 \%$. Note that $I_{A B}=1-H(e)$ is the channel capacity of a binary channel with errors, and that $I_{A B}+I_{B E} \leq 1$.

Factorising RSA 155 (512 bits - summer 1999)

«Challenge» proposed the RSA company (www.rsa.com)
Previous record : RSA140 (465 bits), february 1999
RSA155 $=109417386415705274218097073220403576120037329454492 \backslash$ $059909138421314763499842889347847179972578912673324976257528 \backslash$ 99781833797076537244027146743531593354333897 ;

RSA155 is not a prime ! ("probabilistic" algorithm, very fast)

Factorization?

Preparation : 9 weeks over 10 workstations

Sieve : $\quad 3.5$ months over 300 PCs , 6 countries
Result : $\quad 3.7$ Go, stored in Amsterdam
Processing : 9.5 days on Cray C916, Amsterdam
Factorization: 39.4 hours on 4 workstations
$\mathrm{f} 1=102639592829741105772054196573991675 \backslash$
900716567808038066803341933521790711307779 ;
$f 2=106603488380168454820927220360012878 \backslash$
679207958575989291522270608237193062808643
$\mathbf{f} 1$ and $\mathbf{f} 2$ are primes, and $\mathbf{f} 1 * \mathbf{f} 2=$ RSA155 (immediate on PC)
« Challenges » proposed by the company RSA

Number	bits	digits	date completed	sieving time	algorithm
C116		116	1990	275 MIPS years	mpqs
RSA-120	398	120	June, 1993	830 MIPS years	mpqs
RSA-129	428	129	April, 1994	5000 MIPS years	mpqs
RSA-130	431	130	April, 1996	1000 MIPS years	gnfs
RSA-140	465	140	February, 1999	2000 MIPS years	gnfs
RSA-512	512	155	August, 1999	8000 MIPS years	gnfs
C158		158	January, 2002	3.4 Pentium 1GHz CPU years	gnfs
RSA-160	530	160	March, 2003	2.7 Pentium 1GHz CPU years	gnfs
RSA-576	576	174	December, 2003	13.2 Pentium 1GHz CPU years	gnfs
C176		176	May, 2005	48.6 Pentium 1GHz CPU years	gnfs
RSA-200	663	200	May, 2005	121 Pentium 1GHz CPU years	gnfs
RSA-768	768	232	Dec, 2009	3,300 Opteron 1 GHz CPU years	gnfs

Improvement by three orders of magnitude between 1999 and 2009...

PUBLIC KEY CRYPTOSYSTEMS

- Problems :
- Mathematical demonstrations about PKC have a statistical character (the factorisation may be found easily for "unfortunate choices" of a, b)
--> "recommendations" for the choice of the prime numbers a and b
- No absolute demonstration for security -> better computers, better algorithms (obviously kept secret) ?
- Article by Peter Shor (1994) :
a "quantum computer" might be able to factorize the product of two prime numbers in a "polynomial" time! lot of reactions !

Best classical algorithm (number field sieve) :

$\mathrm{nfs}[\mathrm{n}]=\operatorname{Exp}\left[1.9 \log [\mathrm{n}]^{1 / 3} \log [\log [\mathrm{n}]]^{2 / 3}\right]$
$\operatorname{nfS}\left[2^{1024}\right] / \mathrm{nfs}\left[2^{512}\right]=6.210^{6}$
Shor algorithm : shor $[\mathrm{n}]=\log [\mathrm{n}]^{3}$ shor $\left[2^{1024}\right] / \operatorname{shor}\left[2^{512}\right]=8$

Secret key cryptosystem : one-time pad (G. Vernam, 1917)

- random
- as long as the message
- used only once (Shannon)

«BB84 » Protocol (Bennett and Brassard, 1984)
«BB84 » Protocol (Bennett and Brassard, 1984)

个
-

$$
\begin{aligned}
& \ddagger \downarrow X \uplus X X \Psi
\end{aligned}
$$

> Reading basis
> Received bit
> \uparrow_{1} (8) (8) (8) $\left.\Gamma_{0} \uparrow_{1} \rightarrow 0\right\rangle_{1}$ Discussion $\uparrow_{1} \quad \nearrow_{0} \quad \nearrow_{0} \quad \uparrow_{1} \quad \longrightarrow_{0} \quad \searrow_{1}$ Sifted key

QUANTUM CRYPTOGRAPHY: PRINCIPLE
 (C. Bennett and G. Brassard, 1984)

5 - Classical post-processing (essential for security !)

Requires a public authenticated channel

* Evaluation of errors :

After the initial exchange between Alice and Bob
measure the error rate by comparing publicly a part of the raw key: $->$ evaluation of the amount of information (maybe) available to Eve.

* Error correction and privacy amplification (possible if $\mathrm{I}_{\mathrm{AB}}>\mathrm{I}_{\mathrm{AE}}$!)

Then Alice and Bob extract the available key by correcting errors and
eliminating Eve's residual knowledge (this reduces the size of the key)

6 - Alice and Bob have a totally secure and errorless secret key (non-zero size if initial QBER < 11\%)

Industrial Perspectives ?

* Several startups worldwide are selling QKD systems (optical fibers, 50 km)

* Intense activity in the USA (mostly military) and in Japan (NEC, Fujitsu...)
* In Europe «Integrated Project » SECOQC \qquad
«Secure Communication based on Quantum Cryptography». Urban networks demonstrated in Vienna (2008) and Tokyo (2010, 2015...)

Quantum cryptography with satellites

Coherent States Quantum Key Distribution

* Essential feature : quantum channel with non-commuting quantum observables
$->$ not restricted to single photon polarization or phase !
-> Design of Continuous-Variable QKD protocols where :
* The non-commuting observables are the quadrature operators X and P
* The transmitted light contains weak coherent pulses (about 10 photons) with a gaussian modulation of amplitude and phase
* The detection is made using shot-noise limited homodyne detection

Coherent States Quantum Key Distribution

QKD protocol using coherent states with gaussian amplitude and phase modulation

Efficient transmission of information using continuous variables?
$->$ Shannon's formula (1948) : the mutual information I_{AB} (unit : bit / symbol) for a gaussian channel with additive noise is given by

$$
\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{X} ; \mathrm{Y})
$$

(a) Alice chooses X_{A} and P_{A} within two random gaussian distributions.
(b) Alice sends to Bob the
coherent state $\left|X_{A}+i P_{A}\right\rangle$
(c) Bob measures either X_{B} or P_{B}
(d) Bob and Alice agree on the basis choice (X or P), and keep the relevant values.

Data Reconciliation

If I_{AE} is the smallest, the reconciliation must keep $\mathrm{S}=\mathrm{I}_{A B}-\mathrm{I}_{\mathrm{AE}}$ constant : Alice gives correction data to Bob (and also to Eve), and Bob corrects his data :
«direct reconciliation protocol»

If I_{BE} is the smallest, the reconciliation must keep $\mathrm{S}=\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{BE}}$ constant : Bob gives correction data to Alice (and also to Eve),
and Alice corrects his data :
«reverse reconciliation protocol»

Crucial question for Alice and Bob : how to bound I_{AE} and I_{BE}, knowing I_{AB} ?

Direct reconciliation

Reverse Reconciliation

Bounding $\mathbf{I}_{\text {BE }}$ (F. Grosshans et al., Nature 421, 238 (2003))

$$
\begin{aligned}
& I_{\mathrm{AB}}=1 / 2 \log _{2}\left[1+\mathrm{V}_{\mathrm{A}} /\left(\mathbf{N}_{0}+\mathrm{N}_{\mathrm{eqB}}\right)\right] \\
& \mathbf{I}_{\mathrm{AE}}=1 / 2 \log _{2}\left[1+\mathrm{V}_{\mathrm{A}} /\left(\mathbf{N}_{0}+\mathbf{N}_{\mathrm{eqE}}\right)\right]
\end{aligned}
$$

where
V_{A} : variance of Alice's modulation
N_{0} : shot noise (coherent state)
$\mathrm{N}_{\mathrm{eqB}}$: «equivalent channel noise » on Bob 's side
see e.g. :
$\mathrm{N}_{\mathrm{eqE}}$: «equivalent channel noise» on Eve's side $\}$
Grangier et al.
Nature 396, 537 (1998).
From Heisenberg $\mathbf{N}_{\mathbf{e q B}} \mathbf{N}_{\mathbf{e q E}} \geq \mathbf{N}_{\mathbf{0}}{ }^{\mathbf{2}}$ (no cloning!) and thus

$$
\mathbf{I}_{\mathrm{AE}} \leq\left(\mathrm{I}_{\mathrm{AE}}\right)_{\mathrm{best}}=1 / 2 \log _{2}\left[1+\mathrm{V}_{\mathrm{A}} /\left(\mathbf{N}_{0}+\mathbf{N}_{0}^{2} / \mathrm{N}_{\mathrm{eqB}}\right)\right]
$$

Key size : $\mathbf{S}=\mathbf{I}_{\mathrm{AB}}-\left(\mathbf{I}_{\mathrm{AE}}\right)_{\text {best }}$
How well can Alice and Eve infer Bob's measurement results?
Define the «conditional variance» $V\left(X_{B} \mid X_{E}\right)=V\left(X_{B}\right)-I<X_{B} X_{E}>I^{2} / V\left(X_{E}\right)$
Conditional variances are also bounded by Heisenberg relations :

$$
\mathbf{V}\left(\mathbf{X}_{\mathrm{B}} \mid \mathbf{X}_{\mathrm{A}}\right)_{\min } \mathbf{V}\left(\mathbf{P}_{\mathrm{B}} \mid \mathbf{P}_{\mathrm{E}}\right) \geq \mathbf{N}_{0}^{2} \quad \mathbf{V}\left(\mathbf{P}_{\mathrm{B}} \mid \mathbf{P}_{\mathrm{A}}\right)_{\min } \mathbf{V}\left(\mathbf{X}_{\mathrm{B}} \mid \mathbf{X}_{\mathrm{E}}\right) \geq \mathbf{N}_{0}^{2}
$$

Using again Shannon's theorem... (and some algebra...)

$$
\mathbf{I}_{\mathrm{BE}} \leq\left(\mathbf{I}_{\mathrm{BE}}\right)_{\text {best }}=1 / 2 \log _{2}\left[\mathbf{T}^{2}\left(\mathbf{N}_{\mathrm{eqB}}+\mathbf{N}_{0}+\mathbf{V}_{\mathrm{A}}\right) /\left(\mathbf{N}_{\mathrm{eqB}}+\mathrm{N}_{0}^{2} /\left(\mathbf{N}_{0}+\mathbf{V}_{\mathrm{A}}\right)\right)\right]
$$

Key size : $\mathbf{S}=\mathbf{I}_{\mathrm{AB}}-\left(\mathrm{I}_{\mathrm{BE}}\right)_{\text {best }}$

Reconciliation of correlated Gaussian variables

The noise seen by Bob can be split in two parts (known by Alice and Bob !):

$$
\mathbf{N}_{\text {eqB }}=\mathbf{N}_{\text {losses }}+\mathbf{N}_{\text {excess }}=\mathbf{N}_{0}\left(1-T_{\text {line }}\right) / T_{\text {line }}+\mathbf{N}_{\text {exc }}
$$

$* I_{A E}$: relevant for direct reconciliation, requires $\mathrm{T}_{\text {line }}>0.5$ and $\mathrm{N}_{\mathrm{exc}}<\mathrm{N}_{0}$
$* \mathrm{I}_{\mathrm{BE}}$: relevant for reverse reconciliation, requires $\mathrm{N}_{\mathrm{exc}}<0.5 \mathrm{~N}_{0}$
can be secure for any line transmission !

G. Van Assche et al, IEEE Trans. on Inf. Theory 50, 394 (2004) M. Bloch et al, arXiv:cs.IT/0509041 (2005)

- Standard privacy amplification based on universal hash functions
- Small processing time

Security of coherent state CV-QKD : collective attacks

Alice-Bob mutual information : I_{AB}
Eve-Bob mutual information :
I_{BE} (Shannon : individual attacks)
χ_{BE} (Holevo : collective attacks)

Secret Key Rate :
 $\Delta I=I_{A B}-I_{B E}$ (Shannon)
 $\Delta I=I_{A B}-\chi_{B E}$ (Holevo)

- For both individual and collective attacks Gaussian attacks are optimal \rightarrow Alice and Bob consider Eve's attacks Gaussian and estimate her information using the Shannon quantity $I_{B E}$ or the Holevo quantity $\chi_{B E}$
Fig: $V_{A}=21$ (shot noise units)
M. Navasqués et al, Phys. Rev. Lett. 97, 190502 (2006) R. García-Patrón et al, Phys. Rev. Lett. 97, 190503 (2006)

Error correcting codes efficiency

Error correction with LDPC codes, efficiency β

Imperfect correction efficiency induces a limit to the secure distance

Eve 's attacks

Attacks considered in our proof are individual gaussian attacks (not easy !)

Eve' s best attack against direct reconciliation : cloning machine ($=\mathrm{BS}$) + quantum memory $\mathbf{N}_{\mathrm{eqB}}=(\mathbf{T} / \mathbf{R}) \mathbf{N}_{\mathbf{0}}$ $\mathbf{N}_{\text {eqE }}=(\mathbf{R} / \mathbf{T}) \mathbf{N}_{\mathbf{0}}$

Eve ' s best attack against reverse reconciliation : «entangling cloner» + quantum memories

Security of coherent state CV-QKD protocol

- Security initially proven against (arbitrary) individual attacks : F. Grosshans et al, Nature 421, 238 (2003)
F. Grosshans and N. J. Cerf, Phys. Rev. Lett. 92, 047905 (2004)
- Then security proven against arbitrary collective attacks : F. Grosshans, Phys. Rev. Lett. 94, 020504 (2005)
M. Navasqués and A. Acin, Phys. Rev. Lett. 94, 020505 (2005)
- For both individual and collective attacks Gaussian attacks are optimal \rightarrow Alice and Bob consider Eve's attacks Gaussian and estimate her information using the Shannon quantity $I_{B E}$ or the Holevo quantity $\chi_{B E}$
M. Navasqués et al, Phys. Rev. Lett. 97, 190502 (2006)
R. Garcia-Patron et al, Phys. Rev. Lett. 97, 190503 (2006)
- Finite size effects (needed for real experiments !) : A. Leverrier, F. Grosshans and P. Grangier, Phys. Rev. A 81, 062343 (2010) P. Jouguet, S. Kunz-Jacques, E. Diamanti, A. Leverrier, Phys. Rev. A 86, 032309 (2012)
- Coherent attacks and composable security proofs R. Renner and J.I. Cirac, Phys. Rev. Lett. 102, 110504 (2009)
F. Furrer
F. Furrer et al, Phys. Rev. Lett. 109, 100502 (2012)
A. Leverrier et al, Phys. Rev. Lett. 110, 030502 (2013)
Anthony Leverrier, Phys. Rev. Lett. 114, 070501 (2015)

Field test of a continuous-variable quantum key distribution prototype S Fossier, E Diamanti, T Debuisschert, A Villing, R Tualle-Brouri and P Grangier New J. Phys. 11 No 4, 04502 (April 2009)

Quantum Back-Bone demonstrator

 SECOQC, Vienna, 8 october 2008Real-size demonstration of a secure quantum cryptography network by the European Integrated Project SECOQC, Vienna, 8 october 2008

The SECOQC Quantum Back Bone \mathbb{W} SECOQC

Real-size demonstration of a secure quantum cryptography network by the European Integrated Project SECOQC, Vienna, 8 october 2008

SEQURE
 1011010111011001010001011

Secure Encryption with QUantum key REnewal

- Combining QKD (1 kbit/sec) with fast symmetric encryption (1 Gbit/sec)
- Use 128 bits AES, change key every 10 seconds

THALES

INSTITUT

SECURENET/|

- Thales : Mistral Gbit (fast dedicated AES encryptor)

SEQUURE THALES
SEOURENET)

Field implementation
■ Fibre link : Thales R\&T (Palaiseau) <-> Thales Raytheon Systems (Massy)

- Fiber length about $12 \mathrm{~km}, 5.6 \mathrm{~dB}$ loss

SEQURE
THALES

Institut
d'OPIOUE
:---:
ORAOUAE
.

Results

On site, 12 km distance, 5.6 dB loss
Minimal direct action on hardware (feedback loops, remote control)

See http://www.demo-sequre.com

Implementation of coherent states CV-QKD

Fibered device : 1550 nm , only telecom components (no photon counters !), Range 80 km: P. Jouguet et al, Nature Photonics 7, 378 (2013)

Optimized error correction, Graphic Processing Units (GPU) rather than CPU
=> Lot of calculations, but they do not limit the secret bit rate !
=> Up to 95% of Shannon's limit for any SNR : longer distance

aNTNU

\section*{UnIK} | $\substack{\text { univessity crabuat } \\ \text { center }}$ |
| :---: |

Quantum Hacking

- Several recent exemples of "quantum hacking" (e.g. Vadim Makarov et al.)
- Exploits weaknesses in single photon detectors
- Will NOT work against CVQKD (PIN photodiodes, linear regime)
- Hackers will have to work harder...
- ... and Trojan attacks will not make it (work under way, SQN + U. Erlangen)

 Security of Post-selection based Continuous Variable Security of Post-selection based Continuous Variable Quantum Key Distribution against Arbitrary Attacks Nathan walk, Thomas symul, Timothyc. Ralph, Ping Koy Lam
 arxiv.org $>$ quant-ph $>$ axXivi011.0304 tum Physics
 Continuous variable quantum key distributio in non-Markovian channels
 Ruggero Vasile, Stefano Olivares, Matteo C A Paris, Sabrina Maniscalco
 arxivorg $>$ quant-ph $>$ axix.0900.1.694 Quantum Physics
 Feasibility of continuous-variable quantum key distribution with noisy coherent states
 Vadyslav c. Usenko, Radim Filip
 | |
| :---: |
 axXvoroty $>$ quant-
 Security bound of continuous-variable quantum ke Security bound of continuous-variable quantum ke distribution with noisy coherent states and channel Yong Shen, Jlan Yang, Hong Gwo
 axXv..rg $>$ Quant--ph $>$ axXivo903.0750 Quantum Physics
 direct communications: a quantum Confidential direct communications: a approach using continuous variables Stefano Prandolala, Samueel. Braunstein, Seht Loyd, Stefano

Many other works on CVOKD !
<= Theory and Experiments :
(incomplete list !)

Quantum Physis	
A balanced homodyne detector for high-rate Gaussianmodulated coherent-state quantum key distribution	
Vue-Meng Chi, ing al. Wen zhe	
Quantum Physics	
A 24 km fiber-based discretely signaled continuous variable quantum key distribution system	
Quyen Dinh Xuan, Zheshen Zhang, Paul L. Voss Submitted on 6 Oct 2009)	
org > quant-ph > arxivos 11.4756	

Quantum Physics

Feasibility of free space quantum key distribution with coherent polarization states
D. Elser, T. Bartley, B. Heim, Ch. Wittmann, D. Sych, C. Leuchs

Experimental Demonstration of Post-Selection based Continuous Variable Quantum Key Distribution in the Continuous Variable Quantum Key Distribution in
Presence of Gaussian Noise Thomas Symul, Daniel 1, Atoro, Syed M.

