University Paris-Saclay - IQUPS

Optical Quantum Engineering: From fundamentals to applications

Philippe Grangier, Institut d'Optique, CNRS, Ecole Polytechnique.

- Lecture 1 (7 March, 9:15-10:45) : Qubits, entanglement and Bell's inequalities.
- Lecture 2 (14 March,11:00-12:30) : From QND measurements to quantum gates and quantum information.
- Lecture 3 (21 March, 9:15-10:45) : Quantum cryptography with discrete and continuous variables.
- Lecture 4 (28 March, 11:10-12:30) : Non-Gaussian quantum optics and optical quantum networks.

Content of the Lecture

Part 1 - Quantum optics with discrete and continuous variables
1.1 Homodyne detection and quantum tomography
1.2 Generating non-Gaussian Wigner functions : kittens, cats and beyond

Part 2 - Towards optical quantum networks2.1 Entanglement, teleportation, and quantum repeaters2.2 Some experimental achievements

Part 3 - A close look to a nice single photon 3.1 Single photons: from old times to recent ones 3.2 Experimental perspectives

Quantum description of light

Quantum description of light

	Discrete 🐉 Photons	Continuous –
Parameters :	Number of photons n	Amplitude & Phase (polar) Quadratures X & P (cartesian)
	Destruction operators a Creation operators a ⁺	
	Number operator N = a*a	
		$\begin{array}{c} \mathbf{P} \\ \alpha \\ \phi \end{array} \\ \mathbf{X} \end{array} \begin{array}{c} \mathbf{X} = (\mathbf{a} + \mathbf{a}^{*})/\sqrt{2} \\ \mathbf{P} = (\mathbf{a} - \mathbf{a}^{*})/i\sqrt{2} \\ \mathbf{X} \\ \mathbf{X} \end{array} \\ \mathbf{X} \end{array}$
	I	I

Non-Gaussian States

Basic question :

	Discrete 🍑 Photons	Continuous ─-⁄//── Wave			
Parameters :	Number & Coherence	Amplitude & Phase (polar) Quadratures X & P (cartesian) Wigner function W(X,P)			
Representation:	Density matrix				
Measurement :	Counting : APD, VLPC, TES	Demodulation : Homodyne detection			
« Simple » states	Fock states (number states) Sources : - Single atoms or molecules - NV centers in diamond - Quantum dots - Parametric fluorescence 	Gaussian states Sources : Lasers : Non-linear media : coherent states squeezed states p a ϕ χ			

Non-Gaussian States

Basic question :

н.

Consider a single photon : can we measure its amplitude & phase? quadratures X & P ?

Can the Wigner function of a Fock state n = 1 (with all projections have zero value at origin) be positive everywhere ?

NO ! The Wigner function must be negative It is not a classical statistical distribution !

Hudson-Piquet theorem : for a pure state W is non-positive iff it is non-gaussian Many interesting properties for quantum information processing

Quantum description of light

Wigner function of a single photon state ? (Fock state n = 1)

$$W(p,q) = \frac{1}{2\pi 2N_0} \int dx \, \mathrm{e}^{\frac{\mathrm{i}xp}{2N_0}} \left\langle q - \frac{x}{2} \left| \hat{\rho} \right| q + \frac{x}{2} \right\rangle$$

where $\hat{\rho} = |1\rangle\langle 1|$ and N₀ is the variance of the vacuum noise :

$$[\hat{Q}, \hat{P}] \equiv 2iN_0$$
 $\Delta P \Delta Q \ge N_0$ $N_0 = \Delta P^2 = \Delta Q^2$

One may have $N_0 = \hbar/2$, $N_0 = 1/2$ (theorists), $N_0 = 1$ (experimentalists)

Using the wave function of the n = 1 state : $\langle q | 1 \rangle = \frac{q}{(2\pi)^{\frac{1}{4}} N_0^{\frac{3}{4}}} e^{-\frac{q^2}{4N_0}}$

one gets finally :
$$W_{|1\rangle}(q,p) = -\frac{1}{2\pi N_0} e^{-\frac{r^2}{2N_0}} \left(1 - \frac{r^2}{N_0}\right) \qquad r^2 = q^2 + p^2$$

Make It Quantum and Continuous

Philippe Grangier PERSPECTIVES SCIENCE VOL 332 15 APRIL 2011

Unconditional Quantum Teleportation

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble,* E. S. Polzik

23 OCTOBER 1998 VOL 282 SCIENCE

Quantum key distribution using gaussian-modulated coherent

states NATURE | VOL 421 | 16 JANUARY 2003 |

Frédéric Grosshans*, Gilles Van Assche†, Jérôme Wenger*, Rosa Brouri*, Nicolas J. Cerf† & Philippe Grangier*

NATURE | VOL 432 | 25 NOVEMBER 2004 | www.nature.com/nature Experimental demonstration of

quantum memory for light

Brian Julsgaard¹, Jacob Sherson^{1,2}, J. Ignacio Cirac³, Jaromír Fiurášek⁴ & Eugene S. Polzik¹

Vol 443|5 October 2006|doi:10.1038/nature05136

Quantum teleportation between light and matter

Jacob F. Sherson^{1,6}, Hanna Krauter¹, Rasmus K. Olsson¹, Brian Julsgaard¹, Klemens Hammerer², Ignacio Cirac¹ & Eugene S. Polzik¹

PHYSICAL REVIEW A 68, 042319 (2003)

Quantum computation with optical coherent states T. C. Ralph,* A. Gilchrist, and G. J. Milburn W. J. Munro S. Glancy

Generating Optical Schrödinger Kittens for Quantum Information Processing Alexel Ourisenter. Rea Tualte-Brear: Tuller Laurat. Philipse Grangler* SCIENCE VOL 312 7 APRIL 2006

Vol 448|16 August 2007|doi:10.1038/nature06054 Generation of optical 'Schrödinger cats' from photon number states

Alexei Ourjoumtsev¹, Hyunseok Jeong², Rosa Tualle-Brouri¹ & Philippe Grangier¹

Teleportation of Nonclassical Wave Packets of Light Norivuki Las¹, Hugo Banich¹, Yukhi Takens¹, Shuntaro Takeda¹, James Webb⁴ Hanner Huntinestran² Aktice Functiona²⁺ 15 APRIL 2011 VOL 332 SCIENCE

Small sample, many more papers !

2.1 Entanglement, teleportation, and quantum repeaters 2.2 Some experimental achievements

Part 3 - A close look to a nice single photon

3.1 Single photons: from old times to recent ones3.2 Experimental perspectives

Resource : Two-Photon Fock States

Experimental Wigner function

A. Ourjoumtsev et al, Nature 448, 784, 16 august 2007

Bigger cats : NIST (Gerrits, 3-photon subtraction), ENS (Haroche, microwave cavity QED), UCSB...

Schrödinger cats with with continuous light beams

Groups of A. Furusawa (Tokyo), M. Sasaki (Tokyo), E. Polzik (Copenhagen), U. Andersen (Copenhagen), J. Laurat (Paris),

Schrödinger cats with microwaves in superconducting cavities

Some examples...

Serge Haroche group (cacity QED, Paris) Nature 455, 510 (2008)

$$W(\alpha) = \frac{2}{\pi} \langle \psi | D^{\dagger}(-\alpha) \Pi D(-\alpha) | \psi \rangle$$

Rob Schoelkopf group (circuit QED, Yale) Nature 495, 205 (2013) Cats with 2, 3 or 4 "legs"...

John Martinis group (circuit QED, Santa Barbara) Nature 459, 546 (2009) Quantum state synthetizer

Other methods for bigger / better cats...

J. Etesse, M. Bouillard, B. Kanseri, and R. Tualle-Brouri, Phys. Rev. Lett. 114, 193602 (2015)

Conditionnally prepared state :

$$\psi_{\mathrm{out}}(x) = rac{1}{\sqrt{3}} \ket{0} + \sqrt{rac{2}{3}} \ket{2}$$

Fidelity 99% with an even cat state with $\alpha = 1.63$, squeezed by s = 1.52 along x :

 $\psi_{\text{cat}}(x) \simeq 0.61 |0\rangle + 0.79 |2\rangle + \dots$

Reconstructed Wigner function, corrected for losses.

Content of the Lecture

Part 1 - Quantum optics with discrete and continuous variables

- 1.1 Homodyne detection and quantum tomography
- 1.2 Generating non-Gaussian Wigner functions : kittens, cats and beyond

Part 2 - Towards optical quantum networks

2.1 Entanglement, teleportation, and quantum repeaters 2.2 Some experimental achievements

Part 3 - A close look to a nice single photon

3.1 Single photons: from old times to recent ones3.2 Experimental perspectives

Drawback of this scheme: only one Bell state out of 4 can be identified

Entanglement swapping

- Two entangled pairs 12 and 34
- Bell measurement by Alice on photons 2 and 3
- Photon 1 and 4 become entangled without having ever met !
- This can be checked using a Bell test between 1 and 4.
- With photons + beam-splitter + counters the Bell state analysis remains incomplete

Advances in Quantum Teleportation arXiv:1505.07831

Stefano Pirandola, Jens Elsert, Christian Weedbrook, Akira Furusawa, Samuel L. Braunstei	Stefano Pirandola,	Jens Eisert	Christian	Weedbrook,	Akira Fu	irusawa,	Samuel L. Bi	raunstein
--	--------------------	-------------	-----------	------------	----------	----------	--------------	-----------

Quantum Technology			Efficiency	Fidelity	Distance	Memory	
Photo	Photonic qubits Photonic qubits Platisation ^{16,17,21,22} Time-bins ²¹⁻²⁵ Dual-rails on chip ²⁶		$\leq 50\%^{\dagger}$ 25% 1/27	$\begin{array}{c}\gtrsim 83\%^{22}\\ 81\%^{423}\\ 89\%^{0}\end{array}$	143 km ²² 6 km fibre ²⁴ On chip	} _{N/A¹}	
	1	Spin-orbital qubits27		$\gtrsim 57\%^{4}$	Table-top	J	
NMR ²⁸		100%	≈ 90%	≃1 Å	$\simeq 1 s$		
Optical modes { CVs ²⁹⁻ Hybrid		nat moder ∫ CVs ²⁹⁻³⁶	100%	83%36	12 m ³⁵	JNVAT	
		Hybrid ³⁷	100%	$\gtrsim 80\%$	Table-top	fina	
	(ho	(hot) CV light-to-matter ¹⁸ (hot) CV matter-to-matter ¹⁹ (cold) DV light-to-matter ⁴⁰		58%	Table-top	L me ¹³¹	
Atomic ensembles	(hot)			$\gtrsim 55\%$	0.5 m	(a ms	
	s (cold			78%	7 m fibre	1	
	(cold)	(cold) DV matter-to-matter ⁴¹		88%	150 m fibre	${}^{100 \text{ ms}^{-14}}$	
ſ		Trapped ions42-44	100%	83%44	5 µm43	1	
Trapped atoms { 1	frapped ion:	pped ions & photonic carriers ⁴⁵ tral atoms in an optical cavity ⁴⁶		90%	1 m	2 20 5 - 12	
(N	leutral atom			88%	21 m fibre	184 µs ¹³⁶	
ſ	Frequency qubit to quantum dot ⁴⁷ Polarisation qubit to rare-earth crystal ⁴⁸		25%	78%5	5 m	$\gtrsim 1 \mu s^{\bigstar 137}$	
Polan			25%	89%	10 m, 24.8 km fibre	$1 \text{ ms}^{138}, \simeq 6 \text{ hours}^{133}$	
Sond state	Superconducting qubits on chip49			77%. 69%*	On chip (6 mm)	$\leq 100 \ \mu s^{\pm 139,140}$	
Nitrog	en-vacancy	n-vacancy centres in diamonds ⁵⁰		86%	3 m	$\simeq 0.6 \text{ s}^{7141}, \ge 1 \text{ s}^{7134}$	

Content of the Lecture

UNIVERSITE PARIS-SACLAY

Part 1 - Quantum optics with discrete and continuous variables

- 1.1 Homodyne detection and quantum tomography
- 1.2 Generating non-Gaussian Wigner functions : kittens, cats and beyond

Part 2 - Towards optical quantum networks

2.1 Entanglement, teleportation, and quantum repeaters2.2 Some experimental achievements

Part 3 - A close look to a nice single photon

3.1 Single photons: from old times to recent ones3.2 Experimental perspectives

Single Photon from a single polariton (DLCZ protocol)

E. Bimbard et al, arXiv:1310.1228 (2013), PRL 112, 033601 (2014)

E. Bimbard et al, arXiv:1310.1228 (2013), PRL 112, 033601 (2014)

