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University Paris-Saclay - IQUPS

Optical Quantum Engineering:
From fundamentals to applications

Philippe Grangier,
Institut d’Optique, CNRS, Ecole Polytechnique.

• Lecture 1 (7 March, 9:15-10:45) :
Qubits, entanglement and Bell’s inequalities.

• Lecture 2 (14 March,11:00-12:30) :
From QND measurements to quantum gates.

• Lecture 3 (21 March, 9:15-10:45) :
Quantum optics with discrete and continuous variables.

• Lecture 4 (28 March, 11:10-12:30) :
Quantum cryptography and optical quantum networks.
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Lecture 1 :
Qubits, entanglement, Bell’s inequalities.

1. Dirac’s notations, two-state systems, Bloch sphere (1 qubit...)

2. Tensor product of Hilbert spaces, entanglement (2 qubits...)

3. From the EPR argument to Bell’s inequalities.

4. Loophole-free Bell tests and some perspectives.
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1. Quantum states, Dirac’s notations, qubits.
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Hilbert spaces, Dirac’s notations.

The state of a quantum system is described by a vector | i belonging to an
Hilbert space E (complex vector space, complete and separable).

The physical quantities are described by linear and Hermitian operators ˆA
(observables) acting in E . The measurement results correspond to (real !)
eigenvalues of ˆA.

In the space E one defines a scalar product : (|�i, | i) = h�| i which is
linear on the right side (| i), and antilinear on the left side (|�i).

Dirac’s notations : ket : �A| i ! bra : h |A† �⇤ = �⇤ h |A†

Scalar product = hbra | keti
Home exercise : Using Dirac’s notations show that an Hermitian operator
has real eigenvalues, and that its eigenvectors corresponding to di↵erent
eigenvalues are orthogonal.
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Quantum states, eigenvalues and measurement results.

Physically, giving a quantum state is equivalent to giving the values of a set
of physical properties, which can be predicted with certainty, and measured
repeatedly without changing the state.

Mathematically, this corresponds to the fact that a state | i is a joint eigen-
vector of a set of commuting observables ˆA, ˆB, ˆC ... :

ˆA| i = a| i, ˆB| i = b| i, ˆC| i = c| i...

The state | i is thus equivalent to the set of eigenvalues (a, b, , c... ).

If this set of eigenvalues specifies the state | i in a unique way, the operators
ˆA, ˆB, ˆC ... form a Complete Set of Commuting Observables (“CoSCO”).
The set of eigenvalues is often used instead of the state, by denoting :

| i = |a, b, , c...i.
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Exemple of Hilbert spaces with dimension equal to two.

* Spin 1/2 particle
Spin : angular momentum taking values that are half-integer multiple of
h̄, purely quantum origin. The Hilbert space for a spin 1/2 has dimension
two. In this space the operators for the components of the spin (angular
momentum) are ~S = (Sx, Sy, Sz) where :
~S =

h̄
2

~� with ~� = (�x, �y, �z), où �x, �y, �z are Pauli’s matrices :

�x =

✓
0 1

1 0

◆
�y =

✓
0 �i
i 0

◆
�z =

✓
1 0

0 �1

◆

The usual “computational” basis is usually taken as the eigenvectors |±iz
of �z, so that :

�z|±iz = ±|±iz.
Exemples of spin 1/2 particles: electron, proton, neutron...
A spin is associated with a magnetic momentum : the quantum state of a
spin 1/2 particle can be controlled easily by having it rotating (“precessing”)
in a prescribed magnetic field.
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Exemple of Hilbert spaces with dimension equal to two.

* Spin 1/2 particle

* Polarized photon : states with linear or circular polarisation; mathematical
structure very close to a spin 1/2 (factor 2 on angles, see below).

* “Two-level atom” (attention ! spontaneous emission).

    ||||    ++++ 〉〉〉〉z

    ||||    −−−− 〉〉〉〉z

    ||||    y 〉〉〉〉

    ||||    x 〉〉〉〉

    ||||    e 〉〉〉〉

    ||||    f 〉〉〉〉

Spin 1/2 Photon Atom

These systems are various implementations of a “quantum bit” (qubit).
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Exemple of Hilbert spaces with dimension equal to two.

Home exercise : Let us consider a qubit with the quantum state :

| i = ↵ |0i + � |1i
which is a quantum superposition of the two logical states |0i et |1i.

Depending on the implementation (spin 1/2, photon, atom...) one will get :

|1i = |+iz = |xi = |ei...
|0i = |�iz = |yi = |gi...

•Which results can be found when measuring the qubit’s logical state ?

•With which probabilities?

•What is the di↵erence between the qubit and a “random classical bit”
which would have the same probabilities of finding either 0 or 1 ?
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Bloch’s sphere.

x

y

z

θ

ϕ

Bloch's sphere (spin 1/2)
Denote the eigenstate
along the direction u(θ, ϕ)

u

| ++++ 〉〉〉〉

| −−−− 〉〉〉〉

Normalized vector ~u
ux = cos(�) sin(✓),
uy = sin(�) sin(✓),
uz = cos(✓).

~S.~u =

h̄

2

~�.~u

~�.~u =

 
cos(✓) sin(✓)e�i�

sin(✓)ei� � cos(✓)

!

Eigenvalues of ~�.~u : ±1, eigenstates of ~S.~u = eigenstates of ~�.~u :

|+~ui = cos(✓/2)e�i�/2 |+zi + sin(✓/2)ei�/2 |�zi

|�~ui = � sin(✓/2)e�i�/2 |+zi + cos(✓/2)ei�/2 |�zi
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Bloch’s sphere : magnetic field along Oz

x

y

z

θ

ϕ

B

Bloch's sphere (spin 1/2)
Precession of u(θ, ϕ)

around the field  B // Oz

u

Magnetic field along Oz

Hz =
h̄g

2

�z

| (0)i = ↵|+zi+�|�zi
| (t)i = ↵e�igt/2|+zi+�eigt/2|�zi

Evolution with time : “precession” around ~B

| (0)i = |+~ui = cos(✓/2)e�i�/2 |+zi + sin(✓/2)ei�/2 |�zi

| (t)i = cos(✓/2)e�i(�+gt)/2 |+zi + sin(✓/2)ei(�+gt)/2 |�zi
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Bloch’s sphere : magnetic field with arbitrary orientation

x

y

z

θ

ϕ

B

Bloch's sphere (spin 1/2)
Precession of u(θ, ϕ)

          around any B field

Magnetic field with arbitrary orientation : H =

h̄g
2

~�. ~B/B.

Always a precession around ~B
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Poincaré’s sphere

u

v

w

2 θ

2 ϕ

u

Poincaré 's sphere  (polarized photon)
 cos(ϕ) | x > + ei(2θ−π/2)  sin(ϕ) | y >

opposite points  : orthogonal polarizations 
(u, v) plane : linear polarizations

poles : circular polarizations

With polarized photons instead of spins 1/2, Bloch’s sphere is replaced by
Poincaré’s sphere, with a very similar behaviour (qubits !).
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2. Tensor products of Hilbert spaces.
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What is the problem ?

Question : Which Hilbert space must be used
- to describe a system with several particles
- to describe a particle with several degrees of freedom (motion + spin...)
- in a general way, to ”combine” 2 Hilbert spaces E

1

and E
2

, with basis

{|�(1)n i, n = 1... dim(E
1

)} and {|�(2)p i, p = 1... dim(E
2

)} ?

One may try to define the joint state, for instance for two particles, by
specifying the state of each one :

| i = ( 1 : |�(1)n i, 2 : |�(2)p i )

Answer : One defines the tensor product of two Hilbert spaces E
1

and
E
2

as the space E = E
1

⌦ E
2

generated by the basis obtained by combining

vectors from the two initial basis: |�(1)n i et |�(2)p i :

|�n,pi = |�(1)n i ⌦ |�(2)p i
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Properties of the tensor product space.

* Dimension of E : dim(E ) = dim(E
1

) ⇥ dim(E
2

).

* Scalar product in E :

If |µi = |µ
1

i⌦ |µ
2

i, and |�i = |�
1

i⌦ |�
2

i then : hµ|�i = hµ
1

|�
1

ihµ
2

|�
2

i.

* Operators in E :

One defines A = A
1

⌦A
2

by : A(|�n,1i⌦ |�p,2i) = (A
1

|�n,1i)⌦(A
2

|�p,2i)

* Semi-sloppy notation, very often used :

- A = A
1

⌦ I
2

(very useful) is most often denoted as A
1

- |�
1

i ⌦ |�
2

i is often denoted as |�
1

i|�
2

i or |�
1

, �
2

i
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Entanglement

* Let us consider two vectors in the spaces E
1

and E
2

: | 
1

i =
P

n an|�
(1)

n i
and | 

2

i =
P

p bp|�
(2)

p i. Then :

| i = | 
1

i ⌦ | 
2

i =
X

n,p

an bp |�
(1)

n i ⌦ |�(2)p i

is obviously a vector in E .

* The reciprocal is wrong : there are “non factorisable” vectors in E ,
which cannot be written as a tensor product | 

1

i ⌦ | 
2

i.
Demonstration :

| i =
X

n,p

cn,p |�
(1)

n i ⌦ |�(2)p i 6= | 
1

i ⌦ | 
2

i =
X

n,p

an bp |�
(1)

n i ⌦ |�(2)p i

It is generally impossible to find N
1

coe�cients an and N
2

coe�cients bp so
that the N

1

⇥ N
2

equations cn,p = anbp are all obeyed, because there are
(N

1

+N
2

) unknown and N
1

⇥N
2

equations.

In that case one says that the state | i is “entangled”.
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Exemples of entangled states

* Spin 1/2 particle moving in space : E = Er ⌦ Es

Basis {|ri ⌦ |✏i, r = (x, y, z), ✏ = ±1} with Sz|✏i = ✏ h̄/2 |✏i.
Wave function  ✏(r) = (  

+

(r), �(r) ) (often called a “spinor”).

* Two spins 1/2 particles (= two qubits)

The states are denoted in the basis { |+i, |�i} of eigenstates along z.

• Give a basis of the tensor product space.

• Choose a new basis where each vector is either symmetrical or antisym-
metrical by exchanging the two spins.

• Show that there are three symmetrical states (“triplet” states) and one
antisymmetrical state (“singlet” state).

• Show that the singlet state is entangled.
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3. From the Einstein-Podolsky-Rosen argument
to Bell’s inequalities.
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* Quantum physics has a  non-deterministic character ! 

* But is it possible to explain the  probabilistic character of quantum 

predictions  by invoking a supplementary underlying level of 

description  (supplementary parameters, hidden variables...) ? 

* It was the conclusion of the Einstein-Podolsky-Rosen reasoning 

(1935),   but Bohr strongly opposed, saying that quantum mechanics 
tells everything, and there is "nothing more" to be looked for. 

* Bell's theorem (1964)  allowed  experiments to enter the debate.  

What was  
their worry ?  

A. Einstein    B. Podolsky       N. Rosen 
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The Einstein-Podolsky-Rosen GedankenExperiment
with photons correlated in polarization

S
�
!

"1

+1+1�1

"1
�
#

�1

"1
I II

ba x

y z

Measurement of the polarization de  �1 along orientation a  and of
the polarization de �

!
 along orientation b :  results +1 or –1

Probabilities to find +1 or –1 for �1 (measured along a)   and      
  +1 or –1 for �

!
 (measured along b).

   

Single probabilities
P
!
(a) , P

�
(a)

P
!
(b) , P

�
(b)    

Joint  probabilities
P
!!

(a,b) , P
!�

(a,b)

P
�!

(a,b) , P
��

(a,b)
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The Einstein-Podolsky-Rosen GedankenExperiment
with photons correlated in polarization

S
�
!

"1

+1+1�1

"1
�
#

�1

"1
I II

ba x

y z

For the entangled EPR state…
  
�(�1,�2 ) !

1
2

x, x " y, y# $

Quantum mechanical predicted
results are separately random...    

P
!
(a) " P

�
(a) " 1

2
 ;  P

!
(b) " P

�
(b) " 1

2

... but strongly correlated :

   

P
!!

(a,b) " P
��

(a,b) "
1
2

cos2(a,b)

P
!�

(a,b) " P
�!

(a,b) "
1
2

sin2(a,b)
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The Einstein-Podolsky-Rosen GedankenExperiment
with photons correlated in polarization

S
�
!

"1

+1+1�1

"1
�
#

�1

"1
I II

ba x

y z

For the entangled EPR state…
  
�(�1,�2 ) !

1
2

x, x " y, y# $

Quantum mechanical predicted
results are separately random...    

P
!
(a) " P

�
(a) " 1

2
 ;  P

!
(b) " P

�
(b) " 1

2

if  a = b,  and if one gets  +1 for �
#$
,

then one gets with certainty  +1 also
for �

!$$$$
(i.e.  -1 for �

!$$
never happens)    

a ! b � P
""

! P
��

!
1
2

P
"�

! P
�"

! 0
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Correlation coefficient for polarization results

S
�
!

"1

+1+1�1

"1
�
#

�1

"1
I II

ba x

y z

  � EMQ ! 1
  E ! P

""
" P

��
� P

"�
� P

�"
! P(same results) � P(different results)

The correlation coefficient E  measures the correlations between the
results obtained from the measurements  I and  II :

  

P
!!

" P
��

"
1
2

P
!�

" P
�!

" 0

QM predictions for
parallel polarizers

   EMQ(a,b) ! cos2(a,b)
More generally, for an arbitrary
angle (a,b) between the polarizers

   NB:   EMQ(a,a) !1

Full correlation
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Quantum
predictions

1964: Bell’s theorem

-90 -45 0 45 90

-1,0

-0,5

0,0

0,5

1,0

 

�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

�
!

"1

+1+1�1

"1
�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

Example of LHVT

  (a,b)

   E(a,b)

• Common direction of polarisation � ,
different for each pair :

• Result (!1) depends on the angle between
� and polarizer orientation (a or b)

   A(�,a) ! sign cos2(�a � �)" #

   B(�,b) ! sign cos2(�b � �)" #

 �(�) ! 1/ 2�

Not bad for a first try, but…

LHVT
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1964: Bell’s theorem
�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

�
!

"1

+1+1�1

"1
�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

No local hidden variable theory (in the spirit
of Einstein’s ideas) can reproduce quantum
mechanical predictions for EPR correlations

for all orientations of the polarizers.

So let us consider two measurements on each side, and evaluate
the four correlation functions E(a,b), E(a,b'), E(a',b) , E(a',b') ...



14

1964: Bell’s theorem

Consider local supplementary parameters theories (in
the spirit of Einstein’s ideas on EPR correlations):

�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

�
!

"1

+1+1�1

"1
�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

• The value of �!!determines the
measurements results at I and II

at polarizer I

   B(�,b) ! "1 or �1 at polarizer II

• The values of � are randomly
distributed at the source   �(�) � 0   and   �(�) d�� ! 1

� �

• The two photons of a same pair have a common property �

   A(�,a) ! "1 or �1

  E ! P
""
" P

��
� P

"�
� P

�"
! P(same results) � P(different results)

Then look at the coefficient E, which  measures the correlations
between the results obtained from the measurements  I and  II :
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Bell-CHSH inequalities

Any local hidden variables theory   �   Bell’s inequalities

   �2 � S � 2   with   S ! E(a,b) � E(a, �b ) " E( �a ,b) " E( �a , �b )

CONFLICT ! The possibility to complete quantum
mechanics is no longer a matter of taste (of interpretation).

It has turned into an experimental question.

Quantum mechanics

  SQM ! 2 2 ! 2.828..." 2

a b
a’
b’  

(a,b) ! (b, �a ) ! ( �a ,b) ! �

8
for the orientations

   EMQ(a,b) ! cos2(a,b)

CHSH inequalities (Clauser, Horne, Shimony, Holt, 1969)

Dem : A(�,a) B(�,b) - A(�,a) B(�,b') + A(�,a') B(�,b) + A(�,a') B(�,b') = ± 2
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Bell’s locality condition

…in an experiment with variable polarizers (orientations modified
faster than the propagation time  L / c  of light between polarizers)
Bell’s locality condition becomes a consequence of  Einstein’s
relativistic causality (no faster than light influence)

can be stated as a reasonable hypothesis, but…

   A(�,a,b) B(�,a,b) �(�,a,b)

�
!

"1

+1+1�1

"1
�
#

�1

"1 I IIba
S

L

Conflict between quantum mechanics and
Einstein’s world view (local realism based on relativity)

... but one must carry out specifically designed experiments
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Four generations of experiments 
Pioneers (1972-76): Berkeley, Harvard, Texas A&M 

•  Convenient inequalities: CHSH (Clauser Horne Shimony Holt) 
•  First results contradictory (Clauser = QM; Pipkin ≠ QM), but       

clear trend in favour of Quantum mechanics (Clauser, Fry) 
•  Significantly different from the ideal scheme 

Experiments at Institut d’Optique  (1977-82) 
• A source of entangled photons of unprecedented efficiency 
• Schemes closer and closer to the ideal GedankenExperiment 
• Test of quantum non locality (relativistic separation) 

Third generation experiments (1988-2014, many places...) 
• New sources of entangled pairs 
•  Separate closure of loopholes (improved locality, detection..) 
• Entanglement at a large distance... towards Q. communications 

Fourth generation experiments (2015 - ... ) 
•  Simultaneous closure of all  loopholes (nearly ideal expts)  
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Orsay’s source of pairs of entangled
photons (1980-82)

J = 0
551 nm
�1

�2
423 nm

Kr ion laser

Dye laser

J = 0

�r = 5 ns

* Laser-induced  two-photon
excitation of a cascade in a
Calcium 40 atomic beam.
� 100 detected pairs per second
1% precision for 100 s counting

  

1

2
�

!
,�

�
! �

�
,�

!" #

$
1

2
x, x ! y, y" #

Emission of two
entangled
photons by an
atomic cascade.

J = 1
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Experiment with one-way polarizers
(A. Aspect, P. Grangier, G. Roger, 1981)

* Same idea as J.F. Clauser's 1972
experiment, but laser excitation :
much shorter integration time.
* Violation of Bell’s inequalities
with polarizers 6 m away from the
source :  entanglement survives at
large distance.

Pile of plates polarizer
(10 plates at Brewster angle)
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Experiment with 2-channel polarizers
(A. Aspect, P. Grangier, G. Roger, 1982)

Direct measurement of the polarization correlation coefficient:
simultaneous measurement of the 4 coincidence rates

   
E(a,b) !

N
""

(a,b) � N
"�

(a,b) � N
�"

(a,b) " N
��

(a,b)
N

""
(a,b) " N

"�
(a,b) " N

�"
(a,b) " N

��
(a,b)

S
�
!

"1

�
#

"1
ba

PMPM

PM

�1

PM

( , ), ( , )
( , ), ( , )

N N
N N

" ""�

� "� �

a b a b
a b a b

�1
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Smuggling polarizers from Amsterdam...

!"#$#%&'%()*+%,-./-*0()*+-1
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   For � ! (a,b) ! (b, �a ) ! ( �a ,b) ! 22.5" Sexp(� ) ! 2.697 # 0.015
 Violation of  Bell’s inequalities   S � 2  by more than  40 �

Bell’s limits

Measured value 
! 2 standard dev.

Quantum
mechanical
prediction
(including
imperfections of
real experiment)

Excellent agreement with quantum predictions   SMQ = 2.70

Experiment with 2-channel polarizers
(A. Aspect, P. Grangier, G. Roger, 1981)
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Experiment with variable polarizers
(A.A. 1976; A. Aspect, J. Dalibard, G. Roger, 1982)

S
�
!

�
"

ba
PMPM

PMb’
C2

a’PM
C1

� Not possible with massive polarizer
� Possible with optical switches

• either towards
polarizer a or a'

Equivalent to
polarizers switching
on both sides !

Switches  C1 and
C2 redirects light

• either towards
polarizer b or b'

Counters

In an experiment with variable polarizers (switch faster than  L / c),
results from  relativistic causality (no faster than light influence) !

Bell's locality hypothesis :    A(�,a,b) B(�,a,b) �(�,a,b)
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Experiment with variable polarizers  

Optical switches  
 
in action.... 
from the front... 
 

 from the back... 

* Acousto optical switch :  
 change every 10 ns.   

* Faster than propagation of light 
between polarizers (40 ns) and even 
than time of flight of photons between 
the source S and each switch (20 ns). 
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S 
ν2!ν1!

ba
PM PM 

   

N (a,b) , N (a, ′b )
N ( ′a ,b) , N ( ′a , ′b )

b’ 
C2 

a’ 
C1 

Difficult experiment... 
* reduced signal  

* data accumulation for 
several hours (enough 
for  tasting foie gras and 
Sauternes...)  

* switching not fully 
random 

... but convincing results :  
 * Bell’s inequalities violated by par 6 standard deviations. 
  * Each measurement space-like separated  
   from setting of distant polarizer 
    -> Einstein’s causality enforced 

Experiment with variable polarizers  
(A. Aspect, J. Dalibard, G. Roger, 1982) 



What are the "loopholes" in BI tests ? 	

They are various "defects" which make that the practical implementations 	
of the BI tests do not follow Bell's hypothesis : logical gap in the result. 	
	
Usually they are corrected by adding "supplementary assumptions", 
which are "ad hoc" hypothesis,  allowing to exploit the experimental data.	

The most famous loopholes are :	
	
-  the locality loophole (can be eliminated in principle)	

-  the detection loophole (can be eliminated in principle)	

-  the universal conspiration loophole (telling for instance that there is no 
"true" randomness, and that everything is determined in advance... harder to 
test, but also hardly compatible with physics in general). 	



The locality loophole	

Ideally, the choice of the analyzer orientation a must be space-like separated 
from the choice of b, and from the emission of the correlated pairs.	
 	
Then relativistic causality enforces  Bell's locality condition, as shown by 
Alain Aspect, Phys. Rev. D 14, 1944 (1976) :	

   A(λ,a,b) B(λ,a,b) ρ(λ,a,b)

Until recently two experiments (Aspect et al 1982, Zeilinger et al 1998) have 
fulfilled this condition. For other ones, Bell's locality condition is added as a 
"reasonable hypothesis", but not experimentally demonstrated. 	

Remark : in principle, nothing forbids that QM might be true as long as 
detection events are not space-like separated, and then become wrong when 
they are  (= locality loophole). This invalidates most "algebraic" proofs of the 
impossibility of hidden variables (e.g. Fine, Malley...). 	



The detection loophole	
Ideally, all pairs of particles emitted by the source must be detected and 
must be taken into account when evaluating the correlation functions. 	
	
Alternatively, one must have an "event ready detector" at the source, which 
should be space-like separated from the choice of measurements, and which 
tells that a given emitted pair is valid and must be detected. 	
	
Without that, one may imagine that the polarizer orientations select different 
"sub-ensembles" among the emitted pairs, and BI can be easily violated. 	

Until recently all optical test of BI were subject to the detection loophole. 	
	
Several "auxiliary assumptions" may be used to solve the problem, e.g.  :	

-  the "no-enhancement hypothesis" (Clauser, Shimony, Horne ...)	
-  the "fair sampling" hypothesis (Aspect, Grangier..)	

The basic goal of these hypothesis is to allow to evaluate correlation functions 
over the ensemble of detected pairs, rather than on all emitted pairs. 	



Experiment with 2-channel polarizers �
(A. Aspect, P. Grangier, G. Roger, 1982)	

Direct measurement of the 
polarization correlation coefficient : 
simultaneous measurement of the 4 
coincidence rates 

   
E(a,b) =

N
++

(a,b) − N
+−

(a,b) − N
−+

(a,b) + N
−−

(a,b)
N

++
(a,b) + N

+−
(a,b) + N

−+
(a,b) + N

−−
(a,b)

However note that : N++(a,b) + N+-(a,b) + N-+(a,b) + N-- (a,b) = Ndetected (a,b)	
	 	Ndetected(a,b) =  ε1 ε2 ξ Nemitted ≈ 10�6 Nemitted  	
	 	ε1,  ε2  overall detection efficiencies, ξ  correlation (angle and time)	
	 	A lot of pairs are missing...  	

The situation is much better with parametric photons, but still the condition to 
eliminate this loophole are extremely stringent : typically the overall detection 
efficiency should be larger than 80% (see below)	
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Entangled photon pairs by parametric down conversion
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Well defined directions: can be injected into optical fibers.

Entangled photon pairs by parametric down conversion
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A few considerations on entangled systems.

* Within classical physics, correlations between measurements carried out on
separated subsystems are explained by attributing to each subsystems some
properties which are correlated to properties of the other subsystem.

* If one tries to reproduce quantum correlations using such a model, Bell’s
inequalities show that these properties must be non-local, i.e. must contradict
relativistic causality ! inacceptable.

* Quantum mechanics remains in perfect agreement with relativistic causality,
but there is a price : it is impossible to attribute a “local physical reality” to
the state of each subsystem.

“EPR Paradox” (Einstein Podolsky Rosen, 1935)
“Quantum non-separability”

* We will see now that entanglement plays an essential role in quantum
mechanics in general, and especially in quantum information...


