

Electrical quantum engineering with superconducting circuits

P. Bertet & R. Heeres

SPEC, CEA Saclay (France), Quantronics group

From a *fundamental question* (25 years ago)

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1908 (1985) M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1543 (1985) YES THEY CAN Discrete energy levels

... to genuine artificial atoms

From a *fundamental question* (25 years ago)

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1908 (1985) M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1543 (1985) YES THEY CAN Discrete energy levels

... to genuine artificial atoms for quantum information and quantum optics on a chip

From a *fundamental question* (25 years ago)

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* 85, 1543 (1985)

YES THEY CAN Discrete energy levels

... to genuine artificial atoms for quantum information and quantum optics on a chip

From a *fundamental question* (25 years ago)

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1908 (1985) M.H. Devoret, J.M. Martinis and J. Clarke, *PRL* **85**, 1543 (1985)

YES THEY CAN Discrete energy levels

... to genuine artificial atoms for quantum information and quantum optics on a chip

QUANTUM PHYSICS

QUANTUM ALGORITHMS QUANTUM SIMULATORS

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

Outline

Lecture 1: Basics of superconducting qubits

- 1) Introduction: Hamiltonian of an electrical circuit
- 2) The Cooper-pair box
- 3) Decoherence of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

Real atoms

Real atoms

LC oscillator in the quantum regime ?

2 conditions :

$$kT \ll \hbar \omega_0$$

Typic: $L \approx nH$ $C \approx pF$ $v_0 \approx 5GHz$ At **T=30mK**: $\frac{hv_0}{kT} \approx 8$

OK if dissipation negligible

Superconductors at T<<Tc</p>

Ε

Microwave superconducting resonators

T<<Tc : dissipation negligble at GHz frequencies

Necessity of anharmonicity

How to prepare |1>?

→ Need non-linear and non dissipative element : Josephson junction

Josephson DC relation : $I = I_C \sin \theta$

Josephson AC relation : $V = \varphi_0 \frac{d\theta}{dt} = \frac{Q}{C}$

B. Josephson, *Phys. Lett.* 1, 251 (1962)
P.W. Anderson & J.M. Rowell, *Phys. Rev.* 10, 230 (1963)
S. Shapiro, *Phys. Rev.* 11, 80 (1963)

HAMILTONIAN ???

Correct procedure described in :

M. H. Devoret, p. 351 in Quantum fluctuations (Les Houches 1995)

G. Burkard et al., Phys. Rev. B 69, 064503 (2004)

G. Wendin and V. Shumeiko, cond-mat/0508729

M.H. Devoret, lectures at Collège de France (2008) accessible online

HAMILTONIAN ???

1) Identify the relevant independent circuit variables

- 2) Write the circuit Lagrangian
- 3) Determine the canonical conjugate variables and the Hamiltonian

Identifying the relevant independent circuit variables

1) Choose reference node (ground)

Identifying the relevant independent circuit variables

- 1) Choose reference node (ground)
- 2) Choose « spanning tree » (no loop)

Identifying the relevant independent circuit variables

- 1) Choose reference node (ground)
- 2) Choose « spanning tree » (no loop)
- 3) Define « tree branch fluxes » $\phi_i(t) = \int_{-\infty}^{t} V(t') dt'$

Identifying the relevant independent circuit variables

- 1) Choose reference node (ground)
- 2) Choose « spanning tree » (no loop)
- 3) Define « tree branch fluxes » $\phi_i(t) = \int V(t')dt'$

4) Define node fluxes
$$\Phi_n = \sum_{\text{branches}\beta \text{ leading to } n} \phi_\beta$$

5) What about « closure branches » ??

5) What about « closure branches » ??

PHASE QUANTIZATION CONDITION (superconducting loop)

 $\phi_{a} + \phi_{b} + \phi_{c} + \phi_{d} = \Phi_{ext}$

6) Classical Lagrangian $L(\Phi_i, \dot{\Phi}_i) = E_{electrostatic}(\dot{\Phi}_i) - E_{pot}(\Phi_i)$ taking into account constraints imposed by external biases (fluxes or charges)

Different types of qubits

Different types of qubits

The Cooper-Pair Box

1 degree of freedom 1 knob

$$\left[\hat{\theta},\hat{\mathsf{N}}\right]=i$$

 $E_c = (2e)^2/2C$ charging energy $N_g = C_g V_g/2e$ gate charge

 $\hat{\mathsf{H}} = \mathsf{E}_{\mathsf{C}}(\hat{\mathsf{N}} - \mathsf{N}_{\mathsf{g}})^2 - \mathsf{E}_{\mathsf{J}} \cos\hat{\theta}$

The split CPB

2 d° of freedom

2 knobs

$$\begin{bmatrix} \hat{\theta}_1, \hat{N}_1 \end{bmatrix} = i$$
$$\begin{bmatrix} \hat{\theta}_2, \hat{N}_2 \end{bmatrix} = i$$

or

$$\left[\hat{\theta} = \frac{\hat{\theta}_2 - \hat{\theta}_1}{2}, \hat{N} = \hat{N}_1 - \hat{N}_2\right] = i$$

$$\left[\hat{\delta}=\hat{\theta}_1+\hat{\theta}_2,\hat{\mathsf{K}}=\frac{\hat{\mathsf{N}}_1+\hat{\mathsf{N}}_2}{2}\right]=i$$

$$\hat{H} = E_{c}(\hat{N} - N_{g})^{2} - E_{J}\cos\frac{\delta}{2}\cos\hat{\theta} + \frac{(\Phi - \varphi_{a}\hat{\delta})^{2}}{2L}$$

 $L \ll \phi_0^2/E_J$

The split CPB

1 d° of freedom $\left[\hat{\theta}, \hat{N}\right] = i$

2 knobs

$$\hat{H} = E_{c}(\hat{N} - N_{g})^{2} - E_{J}\cos\frac{\delta}{2}\cos\hat{\theta}$$

tunable E_{J}

Energy levels of the CPB

$$\hat{\mathsf{H}}(\mathsf{N}_{\mathsf{g}},\Phi) = \mathsf{E}_{\mathsf{C}}(\hat{\mathsf{N}}-\mathsf{N}_{\mathsf{g}})^{2} - \mathsf{E}_{\mathsf{J}}(\Phi)\cos\hat{\theta} \longrightarrow \left\{ E_{k}(N_{g},\Phi), |\psi_{k}\rangle(N_{g},\Phi) \right\}$$

Solve either in charge basis |N> ($N \in \mathbb{N}$) $|\Psi_k\rangle = \sum_N c_{k,N} |N\rangle$

$$\hat{H} = E_{c}(N - N_{g})^{2} |N\rangle \langle N| - \frac{E_{J}}{2} \sum_{N \in \Box} (|N + 1\rangle \langle N| + |N\rangle \langle N + 1|)$$

Diagonalize

Energy levels of the CPB

$$\hat{\mathsf{H}}(\mathsf{N}_{\mathsf{g}},\Phi) = \mathsf{E}_{\mathsf{C}}(\hat{\mathsf{N}}-\mathsf{N}_{\mathsf{g}})^{2} - \mathsf{E}_{\mathsf{J}}(\Phi)\cos\hat{\theta} \longrightarrow \left\{ E_{k}(N_{g},\Phi), |\psi_{k}\rangle(N_{g},\Phi) \right\}$$

... or in phase basis
$$|\theta>$$
 ($\theta \in [0, 2\pi]$) $|\psi_k\rangle = \int_{0}^{2\pi} d\theta \psi_k(\theta) |\theta\rangle$

$$\hat{\mathsf{H}}(\mathsf{N}_{\mathsf{g}},\Phi) = \mathsf{E}_{\mathsf{C}} \left(\frac{1}{\mathsf{i}}\frac{\partial}{\partial\theta} - \mathsf{N}_{\mathsf{g}}\right)^2 - \mathsf{E}_{\mathsf{J}}(\Phi)\cos\hat{\theta}$$

Solve Mathieu equation

$$\mathsf{E}_{\mathsf{C}} \left(\frac{1}{i} \frac{\partial}{\partial \theta} - \mathsf{N}_{\mathsf{g}}\right)^{2} \psi_{\mathsf{k}}(\theta) - \mathsf{E}_{\mathsf{J}}(\Phi) \cos \theta \psi_{\mathsf{k}}(\theta) = \mathsf{E}_{\mathsf{k}} \psi_{\mathsf{k}}(\theta)$$

I.2) Cooper-Pair Box

Two simple limits : (1) $E_I(\Phi) \ll E_C$ (charge regime)

Two simple limits : (1) $E_I(\Phi) \ll E_C$ (charge regime)

Two simple limits : (1) $E_I(\Phi) \ll E_C$ (charge regime)

From $E_J(\Phi) \ll E_C$ to $E_J(\Phi) \gg E_C$

I.2) Cooper-Pair Box

Experimental spectrum of a transmon

J. Schreier et al., PRB (2008)

 ω_{01}

I.2) Cooper-Pair Box

Noise in Hamiltonian parameters

MAJOR OBSTACLE TO QUANTUM COMPUTING

Decoherence in superconducting qubits

(Ithier et al., PRB 72, 134519, 2005)

I.3) Decoherence

Noise in Hamiltonian parameters

Origin of the noise ???

1) **ELECTROMAGNETIC**

- Low-frequency : Johnson-Nyquist due to thermal noise
 - High-frequency : spontaneous emission (quantum noise)
 - pprox Under control

I.3) Decoherence

I.3) Decoherence

2) MICROSCOPIC

High-frequency « noise » (or equivalently « losses ») responsible for finite T1

- Imperfect dielectrics, causing microwave losses
- Magnetic vortices trapped in the superconducting thin films
- Unpaired electrons (« Quasiparticles ») in the superconductors

I.3) Decoherence

Coherence times : measurements

2002 : (« Quantronium experiment ») $T_1 = 2\mu s, T_2^* = 500 \text{ns}$

 $T_1 = 30 - 100\mu s, T_2 = 1 - 30\mu s$

ULTIMATE LIMITS ON COHERENCE TIMES UNKNOWN YET

I.3) Decoherence

QUANTRONIUM (Saclay group)

I.3) Decoh

FLUX-QUBIT (Delft group)

TRANSMON QUBIT (Saclay group)

 $2\mu m$

I.3) Decoherence

END OF FIRST LECTURE