

Universidade Federal Fluminense

Entangled structures in classical and quantum optics

Antonio Zelaquett Khoury

Outline

Lecture 1:
Optical vortices as entangled structures in classical and quantum optics
Lecture 2:
Ouantum-like simulations and the role of quantum inequalities
Lecture 3.
Lootare 5.
Ouantization of the electromagnetic field
Lecture 4:
Vector beam quantization and the unified framework

Outline

Lecture 2:

Quantum-like simulations and the role of quantum inequalities

Bell-like inequality for spin-orbit modes

Bell measurement

 $\sigma(\alpha) = \cos \alpha \, \sigma_z + \sin \alpha \, \sigma_x$

$$M(\theta,\phi) = \left\langle \sigma_A(\theta) \otimes \sigma_B(\phi) \right\rangle = P_{++} + P_{--} - P_{+-} - P_{-+}$$
$$S = M\left(\frac{\pi}{8}, 0\right) + M\left(\frac{\pi}{8}, \frac{\pi}{4}\right) - M\left(\frac{3\pi}{8}, 0\right) + M\left(\frac{3\pi}{8}, \frac{\pi}{4}\right)$$

Clauser-Horne-Shimony-Holt

 $|S| < 2 \rightarrow \text{classical}$ $|S| > 2 \rightarrow \text{quantum}$ $S = 2\sqrt{2} \rightarrow \text{Bell} - \text{like} \rightarrow \text{quantum bound}$ A. Aspect, P. Grangier, and G. Roger Phys. Rev. Lett. **49**, 91 (1982)

Spin-orbit rotated basis

$$\mathbf{E}(\mathbf{r}) = E_0 \Psi(\mathbf{r})$$

$$\Psi = \alpha \psi_H (\mathbf{r}) \hat{\mathbf{e}}_H + \beta \psi_H (\mathbf{r}) \hat{\mathbf{e}}_V + \gamma \psi_V (\mathbf{r}) \hat{\mathbf{e}}_H + \delta \psi_V (\mathbf{r}) \hat{\mathbf{e}}_V$$

Spin-orbit Bell measurement

$$I_{\pm\pm}(\theta,\varphi) = \left| \int \left[\hat{e}_{\theta\pm}^* \cdot \Psi(\mathbf{r}) \right] \psi_{\varphi\pm}^*(\mathbf{r}) d^2 \mathbf{r} \right|^2 \qquad \begin{array}{l} \text{Projected} \\ \text{intensities} \end{array}$$
$$M(\theta,\varphi) = I_{++}(\theta,\varphi) + I_{--}(\theta,\varphi) - I_{+-}(\theta,\varphi) - I_{-+}(\theta,\varphi)$$
$$S = M\left(\frac{\pi}{8}, 0\right) + M\left(\frac{\pi}{8}, \frac{\pi}{4}\right) - M\left(\frac{3\pi}{8}, 0\right) + M\left(\frac{3\pi}{8}, \frac{\pi}{4}\right)$$

 $S < 2 \rightarrow$ separable $S > 2 \rightarrow$ nonseparable $S = 2\sqrt{2} \rightarrow$ Bell – like

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury Phys. Rev. A 82, 033833 (2010)

Bell-like Inequality for Spin-Orbit Separability

C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury Phys. Rev. A 82, 033833 (2010)

Bell-like Inequality for Spin-Orbit Separability

	Maxima	ally Non-Separable	Separable			
	Theory	Experiment	Theory	Experiment		
$M(\alpha_1, \beta_1)$	0.707	0.679	0.707	0.665		
$M(\alpha_1,\beta_2)$	0.707	0.583	0.000	0.000		
$M(\alpha_2,\beta_1)$	-0.707	-0.679	-0.707	-0.661		
$M(\alpha_2,\beta_2)$	0.707	0.562	0.000	0.000		
S	2.828	2.503	1.414	1.326		

M. H. M. Passos, et al Phys. Rev. A **98**, 062116 (2018)

Alignment-free quantum cryptography

The BB84 protocol

Alice and Bob check their basis, **but not their results** !

· - ·	

Basis	HV	+/-	+/-	+/-	HV	+/-	HV	HV	HV
Result	0	0	1	1	1	1	0	1	0

BOB	

Basis	+/-	+/-	HV	+/-	HV	HV	HV	+/-	HV
Result	1	0	1	1	1	1	0	0	0
		1 0		1	1		1 0		1 0

Quantum secret

Eva introduces errors

Alice e Bob sacrifice some test bits

Spin-orbit entanglement

Physical Review A 77, 032345 (2008)

Logic basis 0/1

$$|0_{L}\rangle = \frac{1}{\sqrt{2}} \left[| \rightarrow \circ \rangle - | \uparrow \circ \circ \rangle \right] = \frac{1}{\sqrt{2}} \left[| \nearrow \circ \rangle - | \frown \circ \rangle \right]$$
$$|1_{L}\rangle = \frac{1}{\sqrt{2}} \left[| \rightarrow \circ \circ \rangle + | \uparrow \circ \rangle \right] = \frac{1}{\sqrt{2}} \left[| \cancel{\circ} \circ \rangle + | \frown \circ \rangle \right]$$
Invariant under rotations $| | | | |$

Logic basis +/-

$$|\pm_L\rangle = \frac{1}{\sqrt{2}} [|0_L\rangle \pm |1_L\rangle]$$

Robust against alignment noise !!!!

Preparation of the logic bases

Procedure sketch

Experimental setup

Experimental results

Bob`s detection basis:

 $\left\{ \left| 0_{L} \right\rangle \left| 1_{L} \right\rangle \right\}$

Alice sends 1

Bob's detector 1

Bob's detector 0

Experimental results

Bob's detection basis:

Spin-Orbit mode transfer through a teleportation-like scheme

Quantum Teleportation

Quantum Teleportation

Bell basis for qubits A and C

$$|\chi_1\rangle_{AC} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \qquad |\chi_2\rangle_{AC} = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$$
$$|\chi_3\rangle_{AC} = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \qquad |\chi_4\rangle_{AC} = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

Quantum Teleportation

$$\begin{split} \left|\psi\right\rangle_{ABC} &= \left|\psi\right\rangle_{AB} \otimes \left|\varphi\right\rangle_{C} \\ &= \frac{1}{\sqrt{2}} \left(\alpha \left|000\right\rangle_{ABC} + \beta \left|001\right\rangle_{ABC} + \alpha \left|110\right\rangle_{ABC} + \beta \left|111\right\rangle_{ABC}\right) \\ &= \frac{1}{\sqrt{2}} \left(\alpha \left|00\right\rangle_{AC} \left|0\right\rangle_{B} + \beta \left|01\right\rangle_{AC} \left|0\right\rangle_{B} + \alpha \left|10\right\rangle_{AC} \left|1\right\rangle_{B} + \beta \left|11\right\rangle_{AC} \left|1\right\rangle_{B}\right) \end{split}$$

Before AC Bell measurement

$$\begin{split} \left|\psi\right\rangle_{ABC} &= \left|\chi_{1}\right\rangle_{AC} \left(\alpha\left|0\right\rangle_{B} + \beta\left|1\right\rangle_{B}\right) \\ &+ \left|\chi_{2}\right\rangle_{AC} \left(\alpha\left|0\right\rangle_{B} - \beta\left|1\right\rangle_{B}\right) \\ &+ \left|\chi_{3}\right\rangle_{AC} \left(\beta\left|0\right\rangle_{B} + \alpha\left|1\right\rangle_{B}\right) \\ &+ \left|\chi_{4}\right\rangle_{AC} \left(\beta\left|0\right\rangle_{B} - \alpha\left|1\right\rangle_{B}\right) \end{split}$$

After AC Bell measurement

$$\begin{aligned} |\chi_1\rangle_{AC} \Rightarrow \mathbf{1}|\varphi\rangle_B \\ |\chi_2\rangle_{AC} \Rightarrow \sigma_z|\varphi\rangle_B \\ |\chi_3\rangle_{AC} \Rightarrow \sigma_x|\varphi\rangle_B \\ |\chi_4\rangle_{AC} \Rightarrow \sigma_z\sigma_x|\varphi\rangle_B \end{aligned}$$

Spin-orbit mode transfer with a teleportation protocol

B. P. Silva, M. A. Leal, C. E. R. Souza, E. F. Galvão, A. Z. Khoury, J Phys B 49, 055501 (2016)

Topological phase for entangled states

Origin of the geometric phase

N. Mukunda and R. Simon, Ann. Phys. 228, 205 (1993).

N. Mukunda and R. Simon, Ann. Phys. 228, 269 (1993).

$$\begin{aligned} \text{Discrete cycles in the Hilbert space} \\ |\psi_1\rangle \to |\psi_2\rangle \to |\psi_1\rangle \Rightarrow \phi_2 &= \arg[\langle \psi_1 | \psi_2 \rangle \langle \psi_2 | \psi_1 \rangle] = 0 \\ |\psi_1\rangle \to |\psi_2\rangle \to |\psi_3\rangle \to |\psi_1\rangle \Rightarrow \phi_3 &= \arg[\langle \psi_1 | \psi_2 \rangle \langle \psi_2 | \psi_3 \rangle \langle \psi_3 | \psi_1 \rangle \\ &\quad |\psi_1\rangle \to |\psi_2\rangle \to |\psi_3\rangle \to \dots \to |\psi_n\rangle \to |\psi_1\rangle \\ &\quad \phi_n &= \arg[\langle \psi_1 | \psi_2 \rangle \langle \psi_2 | \psi_3 \rangle \langle \psi_3 | \psi_4 \rangle \dots \langle \psi_n | \psi_1 \rangle] \\ &\quad |\psi_j\rangle \to |\psi_j\rangle = e^{i\theta_j} |\psi_j\rangle \Rightarrow \phi_n' = \phi_n \end{aligned}$$

Open transformations

$$|\psi_{1}\rangle \rightarrow |\psi_{2}\rangle \rightarrow |\psi_{3}\rangle \rightarrow \cdots \rightarrow |\psi_{n}\rangle$$

$$\phi_{n} = \arg[\langle\psi_{1}|\psi_{n}\rangle] - \arg[\langle\psi_{1}|\psi_{2}\rangle\langle\psi_{2}|\psi_{3}\rangle\langle\psi_{3}|\psi_{4}\rangle \cdots \langle\psi_{n-1}|\psi_{n}\rangle]$$

Continuous Evolutions

Continuous evolution : $|\psi(t)\rangle = U(t)|\psi(0)\rangle$

$$\phi_g = \arg(\langle \psi(0) | \psi(T) \rangle) + i \int_0^T \langle \psi(t) | \dot{\psi}(t) \rangle dt$$
$$= \arg(Tr[\rho_0 U(T)]) + i \int_0^T Tr[\rho_0 U^{\dagger}(t) \dot{U}(t)] dt$$

$$|\psi(t)\rangle \rightarrow |\psi'(t)\rangle = e^{i\phi(t)}|\psi(t)\rangle \Rightarrow \phi'_g = \phi_g$$

Pancharatnam Phase

S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A, V.44, 247 (1956)Collected Works of S. Pancharatnam, Oxford Univ. Press, London (1975).

Orbital Pancharatnam Phase

E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher,

P.J. Haglin, R.E. Williams, PRL 90, 203901 (2003).

$$\phi_g = - \Omega / 2 = \alpha$$

 $\frac{1}{\sqrt{2}} (\bullet + \bullet) \longrightarrow \frac{1}{\sqrt{2}} (\bullet + i \bullet)$

Geometric representation for two-qubit states

Two Bloch spheres??

Only for product states!!!

Geometric representation for two-qubit PURE states

P. Milman and R. Mosseri, Phys. Rev. Lett. 90, 230403 (2003).

P. Milman, Phys. Rev. A 73, 062118 (2006).

Topological phase for maximally entangled states

Maximally entangled state $\Rightarrow C = 1 \Rightarrow \rho = 0$ Bloch ball colapses to a point!!!!

$$|\psi\rangle = \alpha |00\rangle + \beta |01\rangle - \beta^* |10\rangle + \alpha^* |11\rangle$$

Cyclic evolutions preserving maximal entanglement ("Closed" trajectories) to a point!!!!

Two homotopy classes:

SO(3) sphere

 π

0-type trajectories $\Rightarrow \phi_{top} = 0$ $|\psi(T)\rangle = |\psi(0)\rangle$ π -type trajectories $\Rightarrow \phi_{top} = \pi$ $|\psi(T)\rangle = -|\psi(0)\rangle$

Topological phase for entangled qubits

P. Milman and R. Mosseri, PRL 90, 230403 (2003); P. Milman, PRA 73, 062118 (2006).

Maximally entangled state $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle - \beta^* |10\rangle + \alpha^* |11\rangle$

 $C = 1 \Rightarrow \rho = 0$ Bloch ball colapses to a point!!

0-type trajectories $\Rightarrow \phi_{top} = 0 \quad |\psi(T)\rangle = |\psi(0)\rangle$ π -type trajectories $\Rightarrow \phi_{top} = \pi \quad |\psi(T)\rangle = -|\psi(0)\rangle$

C. E. R. Souza, J. A. O. Huguenin, P. Milman, A. Z. Khoury PRL 99, 160401 (2007)

J. Du, J. Zhu, M. Shi, X. Peng, and D. Suter PRA 76, 042121 (2007)

Topological phase for spin-orbit modes of a laser beam

C. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. Khoury

IF-UFF

P. Milman

LMPQ – Jussieu - France

Nonseparable polarization-OAM modes

$$\Psi(\mathbf{r}) = \alpha \psi_{+}(\mathbf{r})\hat{\mathbf{e}}_{H} + \beta \psi_{+}(\mathbf{r})\hat{\mathbf{e}}_{V} - \beta^{*} \psi_{-}(\mathbf{r})\hat{\mathbf{e}}_{H} + \alpha^{*} \psi_{-}(\mathbf{r})\hat{\mathbf{e}}_{V}$$

Geometric representation on the SO(3) sphere

$$\alpha = \cos(a/2) - ik_z \operatorname{sen}(a/2)$$
$$\beta = -(k_y + ik_x)\operatorname{sen}(a/2)$$

W. LiMing, Z. L. Tang, and C. J. Liao, Phys. Rev. A 69, 064301 (2004).

$$\Psi_{1}(\vec{r}) = \frac{1}{\sqrt{2}} \left[\psi_{+}(\mathbf{r}) \hat{\mathbf{e}}_{H} + \psi_{-}(\mathbf{r}) \hat{\mathbf{e}}_{V} \right] \quad \Psi_{2}(\mathbf{r}) = \frac{-i}{\sqrt{2}} \left[\psi_{+}(\mathbf{r}) \hat{\mathbf{e}}_{H} - \psi_{-}(\mathbf{r}) \hat{\mathbf{e}}_{V} \right]$$
$$\Psi_{3}(\vec{r}) = \frac{-i}{\sqrt{2}} \left[\psi_{+}(\mathbf{r}) \hat{\mathbf{e}}_{V} + \psi_{-}(\mathbf{r}) \hat{\mathbf{e}}_{H} \right] \quad \Psi_{4}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left[\psi_{+}(\mathbf{r}) \hat{\mathbf{e}}_{V} - \psi_{-}(\mathbf{r}) \hat{\mathbf{e}}_{H} \right]$$

Interferometric measurement

Partial separability and concurrence

Partially separable mode
$$\mathbf{E}_{\varepsilon}(\mathbf{r}) = E_0 \left[\sqrt{\varepsilon} \ \psi_+(\mathbf{r}) \hat{\mathbf{e}}_H + \sqrt{1-\varepsilon} \ \psi_-(\mathbf{r}) \hat{\mathbf{e}}_V \right]$$
Interference pattern $I(\vec{r}) = 2|\psi(\mathbf{r})|^2 \left(1 + 2\sqrt{\varepsilon(1-\varepsilon)} \ \frac{2xy \sin qy}{x^2 + y^2} \right)$
CONCURRENCE
$$\int_{\mathbf{r}} \frac{\mathbf{r}}{\mathbf{r}} \frac{\mathbf{r}}{\mathbf{r}}$$

Conclusions

- Topological phase for spin-orbit transformations [PRL 99, 160401 (2007)]
- Alignment free BB84 quantum cryptography [PRA 77, 032345 (2008)]
- Bell-like inequality [PRA 82, 033833 (2010)]
- Realization of quantum gates [Opt. Exp. 18, 9207 (2010)]
- Quantum teleportation in the spin-orbit variables [PRA 83, 060301 (2011)]